正则分割多项式的单模态性

Xin-Chun Zhan, Bao-Xuan Zhu
{"title":"正则分割多项式的单模态性","authors":"Xin-Chun Zhan, Bao-Xuan Zhu","doi":"10.1007/s11139-024-00925-3","DOIUrl":null,"url":null,"abstract":"<p>Let <i>n</i>, <i>p</i> and <i>j</i> be integers. Define </p><span>$$\\begin{aligned} R_{n,p,j}(q):=\\prod _{k=0}^{n}(1+q^{pk+1})(1+q^{pk+2})\\cdots (1+q^{pk+j}). \\end{aligned}$$</span><p>The coefficients of the polynomial <span>\\(R_{n,p,j}(q)\\)</span> count certain regular partition. Recently, Dong and Ji studied unimodality of the polynomials <span>\\(R_{n,p,p-1}(q)\\)</span>. As an extension, in this paper, we give a criterion for unimodality of the polynomials <span>\\( R_{n,p,j}(q)\\)</span> for <span>\\(p \\ge 6\\)</span> and <span>\\(\\lceil \\frac{p+1}{2}\\rceil \\le j\\le p-1.\\)</span> In particular, using our criterion and Mathematica, we obtain that <span>\\(R_{n,p,j}(q)\\)</span> is unimodal for <span>\\(n\\ge 3\\)</span> if <span>\\(6\\le p \\le 15\\)</span> and <span>\\(\\lceil \\frac{p+1}{2}\\rceil \\le j\\le p-1.\\)</span></p>","PeriodicalId":501430,"journal":{"name":"The Ramanujan Journal","volume":"117 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unimodality of regular partition polynomials\",\"authors\":\"Xin-Chun Zhan, Bao-Xuan Zhu\",\"doi\":\"10.1007/s11139-024-00925-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>n</i>, <i>p</i> and <i>j</i> be integers. Define </p><span>$$\\\\begin{aligned} R_{n,p,j}(q):=\\\\prod _{k=0}^{n}(1+q^{pk+1})(1+q^{pk+2})\\\\cdots (1+q^{pk+j}). \\\\end{aligned}$$</span><p>The coefficients of the polynomial <span>\\\\(R_{n,p,j}(q)\\\\)</span> count certain regular partition. Recently, Dong and Ji studied unimodality of the polynomials <span>\\\\(R_{n,p,p-1}(q)\\\\)</span>. As an extension, in this paper, we give a criterion for unimodality of the polynomials <span>\\\\( R_{n,p,j}(q)\\\\)</span> for <span>\\\\(p \\\\ge 6\\\\)</span> and <span>\\\\(\\\\lceil \\\\frac{p+1}{2}\\\\rceil \\\\le j\\\\le p-1.\\\\)</span> In particular, using our criterion and Mathematica, we obtain that <span>\\\\(R_{n,p,j}(q)\\\\)</span> is unimodal for <span>\\\\(n\\\\ge 3\\\\)</span> if <span>\\\\(6\\\\le p \\\\le 15\\\\)</span> and <span>\\\\(\\\\lceil \\\\frac{p+1}{2}\\\\rceil \\\\le j\\\\le p-1.\\\\)</span></p>\",\"PeriodicalId\":501430,\"journal\":{\"name\":\"The Ramanujan Journal\",\"volume\":\"117 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Ramanujan Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11139-024-00925-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Ramanujan Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11139-024-00925-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设 n、p 和 j 均为整数。定义 $$begin{aligned}R_{n,p,j}(q):=\prod _{k=0}^{n}(1+q^{pk+1})(1+q^{pk+2})\cdots (1+q^{pk+j}).\end{aligned}$$多项式 \(R_{n,p,j}(q)\)的系数包含一定的规则分区。最近,Dong 和 Ji 研究了多项式 \(R_{n,p,p-1}(q)\)的单调性。作为扩展,我们在本文中给出了多项式 \( R_{n,p,j}(q)\) 对于 \(p \ge 6\) 和 \(\lceil \frac{p+1}{2}\rceil \le jle p-1.\特别地,使用我们的标准和Mathematica,我们可以得到,如果(6,p,j}(q))和(lceil (frac{p+1}{2}rceil (jle jle p-1))对于(n,3)来说是单峰的。)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unimodality of regular partition polynomials

Let np and j be integers. Define

$$\begin{aligned} R_{n,p,j}(q):=\prod _{k=0}^{n}(1+q^{pk+1})(1+q^{pk+2})\cdots (1+q^{pk+j}). \end{aligned}$$

The coefficients of the polynomial \(R_{n,p,j}(q)\) count certain regular partition. Recently, Dong and Ji studied unimodality of the polynomials \(R_{n,p,p-1}(q)\). As an extension, in this paper, we give a criterion for unimodality of the polynomials \( R_{n,p,j}(q)\) for \(p \ge 6\) and \(\lceil \frac{p+1}{2}\rceil \le j\le p-1.\) In particular, using our criterion and Mathematica, we obtain that \(R_{n,p,j}(q)\) is unimodal for \(n\ge 3\) if \(6\le p \le 15\) and \(\lceil \frac{p+1}{2}\rceil \le j\le p-1.\)

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信