{"title":"FORBIDDEN INDUCED SUBGRAPHS AND THE ŁOŚ–TARSKI THEOREM","authors":"YIJIA CHEN, JÖRG FLUM","doi":"10.1017/jsl.2023.99","DOIUrl":"https://doi.org/10.1017/jsl.2023.99","url":null,"abstract":"<p>Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226160248729-0542:S0022481223000993:S0022481223000993_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$mathscr {C}$</span></span></img></span></span> be a class of finite and infinite graphs that is closed under induced subgraphs. The well-known Łoś–Tarski Theorem from classical model theory implies that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226160248729-0542:S0022481223000993:S0022481223000993_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$mathscr {C}$</span></span></img></span></span> is definable in first-order logic by a sentence <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226160248729-0542:S0022481223000993:S0022481223000993_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$varphi $</span></span></img></span></span> if and only if <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226160248729-0542:S0022481223000993:S0022481223000993_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$mathscr {C}$</span></span></img></span></span> has a finite set of forbidden induced finite subgraphs. This result provides a powerful tool to show nontrivial characterizations of graphs of small vertex cover, of bounded tree-depth, of bounded shrub-depth, etc. in terms of forbidden induced finite subgraphs. Furthermore, by the Completeness Theorem, we can compute from <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226160248729-0542:S0022481223000993:S0022481223000993_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$varphi $</span></span></img></span></span> the corresponding forbidden induced subgraphs. This machinery fails on finite graphs as shown by our results: </p><ul><li><p><span>–</span> There is a class <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226160248729-0542:S0022481223000993:S0022481223000993_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$mathscr {C}$</span></span></img></span></span> of finite graphs that is definable in first-order logic and closed under induced subgraphs but has no finite set of forbidden induced subgraphs.</p></li><li><p><span>–</span> Even if we only consider classes <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226160248729-0542:S0022481223000993:S0022481223000993_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$mathscr {C}$</span></span></img></span></span> of finite graphs that can be characterize","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":"79 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140008111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"LEBESGUE MEASURE ZERO MODULO IDEALS ON THE NATURAL NUMBERS","authors":"VIERA GAVALOVÁ, DIEGO A. MEJÍA","doi":"10.1017/jsl.2023.97","DOIUrl":"https://doi.org/10.1017/jsl.2023.97","url":null,"abstract":"<p>We propose a reformulation of the ideal <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240427135220755-0671:S002248122300097X:S002248122300097X_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$mathcal {N}$</span></span></img></span></span> of Lebesgue measure zero sets of reals modulo an ideal <span>J</span> on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240427135220755-0671:S002248122300097X:S002248122300097X_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$omega $</span></span></img></span></span>, which we denote by <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240427135220755-0671:S002248122300097X:S002248122300097X_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$mathcal {N}_J$</span></span></img></span></span>. In the same way, we reformulate the ideal <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240427135220755-0671:S002248122300097X:S002248122300097X_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$mathcal {E}$</span></span></img></span></span> generated by <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240427135220755-0671:S002248122300097X:S002248122300097X_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$F_sigma $</span></span></img></span></span> measure zero sets of reals modulo <span>J</span>, which we denote by <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240427135220755-0671:S002248122300097X:S002248122300097X_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$mathcal {N}^*_J$</span></span></img></span></span>. We show that these are <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240427135220755-0671:S002248122300097X:S002248122300097X_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$sigma $</span></span></img></span></span>-ideals and that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240427135220755-0671:S002248122300097X:S002248122300097X_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$mathcal {N}_J=mathcal {N}$</span></span></img></span></span> iff <span>J</span> has the Baire property, which in turn is equivalent to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240427135220755-0671:S002248122300097X:S002248122300097X_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$mathcal {N}^*_J=mathcal {E}$","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":"38 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140811419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"THE STRONG AND SUPER TREE PROPERTIES AT SUCCESSORS OF SINGULAR CARDINALS","authors":"WILLIAM ADKISSON","doi":"10.1017/jsl.2023.96","DOIUrl":"https://doi.org/10.1017/jsl.2023.96","url":null,"abstract":"<p>The strong tree property and ITP (also called the super tree property) are generalizations of the tree property that characterize strong compactness and supercompactness up to inaccessibility. That is, an inaccessible cardinal <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240205102020887-0367:S0022481223000968:S0022481223000968_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$kappa $</span></span></img></span></span> is strongly compact if and only if the strong tree property holds at <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240205102020887-0367:S0022481223000968:S0022481223000968_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$kappa $</span></span></img></span></span>, and supercompact if and only if ITP holds at <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240205102020887-0367:S0022481223000968:S0022481223000968_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$kappa $</span></span></img></span></span>. We present several results motivated by the problem of obtaining the strong tree property and ITP at many successive cardinals simultaneously; these results focus on the successors of singular cardinals. We describe a general class of forcings that will obtain the strong tree property and ITP at the successor of a singular cardinal of any cofinality. Generalizing a result of Neeman about the tree property, we show that it is consistent for ITP to hold at <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240205102020887-0367:S0022481223000968:S0022481223000968_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$aleph _n$</span></span></img></span></span> for all <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240205102020887-0367:S0022481223000968:S0022481223000968_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$2 leq n < omega $</span></span></img></span></span> simultaneously with the strong tree property at <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240205102020887-0367:S0022481223000968:S0022481223000968_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$aleph _{omega +1}$</span></span></img></span></span>; we also show that it is consistent for ITP to hold at <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240205102020887-0367:S0022481223000968:S0022481223000968_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$aleph _n$</span></span></img></span></span> for all <span><span><img data-mimesubtyp","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":"100 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139760050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"DEGREE SPECTRA OF HOMEOMORPHISM TYPE OF COMPACT POLISH SPACES","authors":"MATHIEU HOYRUP, TAKAYUKI KIHARA, VICTOR SELIVANOV","doi":"10.1017/jsl.2023.93","DOIUrl":"https://doi.org/10.1017/jsl.2023.93","url":null,"abstract":"<p>A Polish space is not always homeomorphic to a computably presented Polish space. In this article, we examine degrees of non-computability of presenting homeomorphic copies of compact Polish spaces. We show that there exists a <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231230111313840-0034:S0022481223000932:S0022481223000932_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$mathbf {0}'$</span></span></img></span></span>-computable low<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231230111313840-0034:S0022481223000932:S0022481223000932_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$_3$</span></span></img></span></span> compact Polish space which is not homeomorphic to a computable one, and that, for any natural number <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231230111313840-0034:S0022481223000932:S0022481223000932_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$ngeq 2$</span></span></img></span></span>, there exists a Polish space <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231230111313840-0034:S0022481223000932:S0022481223000932_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$X_n$</span></span></img></span></span> such that exactly the high<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231230111313840-0034:S0022481223000932:S0022481223000932_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$_{n}$</span></span></img></span></span>-degrees are required to present the homeomorphism type of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231230111313840-0034:S0022481223000932:S0022481223000932_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$X_n$</span></span></img></span></span>. Along the way we investigate the computable aspects of Čech homology groups. We also show that no compact Polish space has a least presentation with respect to Turing reducibility.</p>","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139078382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"DIVIDING LINES BETWEEN POSITIVE THEORIES","authors":"ANNA DMITRIEVA, FRANCESCO GALLINARO, MARK KAMSMA","doi":"10.1017/jsl.2023.89","DOIUrl":"https://doi.org/10.1017/jsl.2023.89","url":null,"abstract":"<p>We generalise the properties <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240102071928484-0184:S0022481223000890:S0022481223000890_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$mathsf {OP}$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240102071928484-0184:S0022481223000890:S0022481223000890_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$mathsf {IP}$</span></span></img></span></span>, <span>k</span>-<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240102071928484-0184:S0022481223000890:S0022481223000890_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$mathsf {TP}$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240102071928484-0184:S0022481223000890:S0022481223000890_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$mathsf {TP}_{1}$</span></span></img></span></span>, <span>k</span>-<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240102071928484-0184:S0022481223000890:S0022481223000890_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$mathsf {TP}_{2}$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240102071928484-0184:S0022481223000890:S0022481223000890_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$mathsf {SOP}_{1}$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240102071928484-0184:S0022481223000890:S0022481223000890_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$mathsf {SOP}_{2}$</span></span></img></span></span>, and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240102071928484-0184:S0022481223000890:S0022481223000890_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$mathsf {SOP}_{3}$</span></span></img></span></span> to positive logic, and prove various implications and equivalences between them. We also provide a characterisation of stability in positive logic in analogy with the one in full first-order logic, both on the level of formulas and on the level of theories. For simple theories there are the classically equivalent definitions of not having <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240102071928484-0184:S0022481223000890:S0022481223000890_inline9.png\"><span data-mat","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":"26 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139078377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"TWO EXAMPLES CONCERNING EXISTENTIAL UNDECIDABILITY IN FIELDS","authors":"PHILIP DITTMANN","doi":"10.1017/jsl.2023.87","DOIUrl":"https://doi.org/10.1017/jsl.2023.87","url":null,"abstract":"<p>We construct an existentially undecidable complete discretely valued field of mixed characteristic with existentially decidable residue field and decidable algebraic part, answering a question by Anscombe–Fehm in a strong way. Along the way, we construct an existentially decidable field of positive characteristic with an existentially undecidable finite extension, modifying a construction due to Kesavan Thanagopal.</p>","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":"164 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138825760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"COFINAL TYPES BELOW","authors":"ROY SHALEV","doi":"10.1017/jsl.2023.32","DOIUrl":"https://doi.org/10.1017/jsl.2023.32","url":null,"abstract":"It is proved that for every positive integer <jats:italic>n</jats:italic>, the number of non-Tukey-equivalent directed sets of cardinality <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481223000324_inline2.png\" /> <jats:tex-math> $leq aleph _n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is at least <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481223000324_inline3.png\" /> <jats:tex-math> $c_{n+2}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481223000324_inline4.png\" /> <jats:tex-math> $(n+2)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-Catalan number. Moreover, the class <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481223000324_inline5.png\" /> <jats:tex-math> $mathcal D_{aleph _n}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of directed sets of cardinality <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481223000324_inline6.png\" /> <jats:tex-math> $leq aleph _n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> contains an isomorphic copy of the poset of Dyck <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481223000324_inline7.png\" /> <jats:tex-math> $(n+2)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-paths. Furthermore, we give a complete description whether two successive elements in the copy contain another directed set in between or not.","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":"63 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138521968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ABELIAN GROUPS DEFINABLE IN p-ADICALLY CLOSED FIELDS","authors":"WILL JOHNSON, NINGYUAN YAO","doi":"10.1017/jsl.2023.52","DOIUrl":"https://doi.org/10.1017/jsl.2023.52","url":null,"abstract":"<p>Recall that a group <span>G</span> has finitely satisfiable generics (<span>fsg</span>) or definable <span>f</span>-generics (<span>dfg</span>) if there is a global type <span>p</span> on <span>G</span> and a small model <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230810121852131-0633:S002248122300052X:S002248122300052X_inline1.png\"/><span data-mathjax-type=\"texmath\"><span>$M_0$</span></span></span></span> such that every left translate of <span>p</span> is finitely satisfiable in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230810121852131-0633:S002248122300052X:S002248122300052X_inline2.png\"/><span data-mathjax-type=\"texmath\"><span>$M_0$</span></span></span></span> or definable over <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230810121852131-0633:S002248122300052X:S002248122300052X_inline3.png\"/><span data-mathjax-type=\"texmath\"><span>$M_0$</span></span></span></span>, respectively. We show that any abelian group definable in a <span>p</span>-adically closed field is an extension of a definably compact <span>fsg</span> definable group by a <span>dfg</span> definable group. We discuss an approach which might prove a similar statement for interpretable abelian groups. In the case where <span>G</span> is an abelian group definable in the standard model <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230810121852131-0633:S002248122300052X:S002248122300052X_inline4.png\"/><span data-mathjax-type=\"texmath\"><span>$mathbb {Q}_p$</span></span></span></span>, we show that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230810121852131-0633:S002248122300052X:S002248122300052X_inline5.png\"/><span data-mathjax-type=\"texmath\"><span>$G^0 = G^{00}$</span></span></span></span>, and that <span>G</span> is an open subgroup of an algebraic group, up to finite factors. This latter result can be seen as a rough classification of abelian definable groups in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230810121852131-0633:S002248122300052X:S002248122300052X_inline6.png\"/><span data-mathjax-type=\"texmath\"><span>$mathbb {Q}_p$</span></span></span></span>.</p>","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138521969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}