在p-基闭域中可定义的阿贝尔群

WILL JOHNSON, NINGYUAN YAO
{"title":"在p-基闭域中可定义的阿贝尔群","authors":"WILL JOHNSON, NINGYUAN YAO","doi":"10.1017/jsl.2023.52","DOIUrl":null,"url":null,"abstract":"<p>Recall that a group <span>G</span> has finitely satisfiable generics (<span>fsg</span>) or definable <span>f</span>-generics (<span>dfg</span>) if there is a global type <span>p</span> on <span>G</span> and a small model <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230810121852131-0633:S002248122300052X:S002248122300052X_inline1.png\"/><span data-mathjax-type=\"texmath\"><span>$M_0$</span></span></span></span> such that every left translate of <span>p</span> is finitely satisfiable in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230810121852131-0633:S002248122300052X:S002248122300052X_inline2.png\"/><span data-mathjax-type=\"texmath\"><span>$M_0$</span></span></span></span> or definable over <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230810121852131-0633:S002248122300052X:S002248122300052X_inline3.png\"/><span data-mathjax-type=\"texmath\"><span>$M_0$</span></span></span></span>, respectively. We show that any abelian group definable in a <span>p</span>-adically closed field is an extension of a definably compact <span>fsg</span> definable group by a <span>dfg</span> definable group. We discuss an approach which might prove a similar statement for interpretable abelian groups. In the case where <span>G</span> is an abelian group definable in the standard model <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230810121852131-0633:S002248122300052X:S002248122300052X_inline4.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mathbb {Q}_p$</span></span></span></span>, we show that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230810121852131-0633:S002248122300052X:S002248122300052X_inline5.png\"/><span data-mathjax-type=\"texmath\"><span>$G^0 = G^{00}$</span></span></span></span>, and that <span>G</span> is an open subgroup of an algebraic group, up to finite factors. This latter result can be seen as a rough classification of abelian definable groups in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230810121852131-0633:S002248122300052X:S002248122300052X_inline6.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mathbb {Q}_p$</span></span></span></span>.</p>","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ABELIAN GROUPS DEFINABLE IN p-ADICALLY CLOSED FIELDS\",\"authors\":\"WILL JOHNSON, NINGYUAN YAO\",\"doi\":\"10.1017/jsl.2023.52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recall that a group <span>G</span> has finitely satisfiable generics (<span>fsg</span>) or definable <span>f</span>-generics (<span>dfg</span>) if there is a global type <span>p</span> on <span>G</span> and a small model <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230810121852131-0633:S002248122300052X:S002248122300052X_inline1.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$M_0$</span></span></span></span> such that every left translate of <span>p</span> is finitely satisfiable in <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230810121852131-0633:S002248122300052X:S002248122300052X_inline2.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$M_0$</span></span></span></span> or definable over <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230810121852131-0633:S002248122300052X:S002248122300052X_inline3.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$M_0$</span></span></span></span>, respectively. We show that any abelian group definable in a <span>p</span>-adically closed field is an extension of a definably compact <span>fsg</span> definable group by a <span>dfg</span> definable group. We discuss an approach which might prove a similar statement for interpretable abelian groups. In the case where <span>G</span> is an abelian group definable in the standard model <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230810121852131-0633:S002248122300052X:S002248122300052X_inline4.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {Q}_p$</span></span></span></span>, we show that <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230810121852131-0633:S002248122300052X:S002248122300052X_inline5.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$G^0 = G^{00}$</span></span></span></span>, and that <span>G</span> is an open subgroup of an algebraic group, up to finite factors. This latter result can be seen as a rough classification of abelian definable groups in <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230810121852131-0633:S002248122300052X:S002248122300052X_inline6.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {Q}_p$</span></span></span></span>.</p>\",\"PeriodicalId\":501300,\"journal\":{\"name\":\"The Journal of Symbolic Logic\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Symbolic Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/jsl.2023.52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Symbolic Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jsl.2023.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

回想一下,如果G上存在一个全局类型p和一个小模型$M_0$,使得p的每一个左平移分别在$M_0$中有限可满足或在$M_0$上可定义,则群G具有有限可满足泛型(fsg)或可定义的f-泛型(dfg)。证明了在p基闭域上任何可定义的阿贝尔群都是可定义紧可定义群由可定义群扩展而来。我们讨论了一种可能证明可解释阿贝尔群的类似陈述的方法。在G是标准模型$\mathbb {Q}_p$中可定义的阿贝尔群的情况下,我们证明了$G^0 = G^{00}$,并且G是一个代数群的开子群,最大因子为有限。后一种结果可以看作是$\mathbb {Q}_p$中阿贝尔可定义群的粗略分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ABELIAN GROUPS DEFINABLE IN p-ADICALLY CLOSED FIELDS

Recall that a group G has finitely satisfiable generics (fsg) or definable f-generics (dfg) if there is a global type p on G and a small model $M_0$ such that every left translate of p is finitely satisfiable in $M_0$ or definable over $M_0$, respectively. We show that any abelian group definable in a p-adically closed field is an extension of a definably compact fsg definable group by a dfg definable group. We discuss an approach which might prove a similar statement for interpretable abelian groups. In the case where G is an abelian group definable in the standard model $\mathbb {Q}_p$, we show that $G^0 = G^{00}$, and that G is an open subgroup of an algebraic group, up to finite factors. This latter result can be seen as a rough classification of abelian definable groups in $\mathbb {Q}_p$.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信