紧凑抛光空间同构类型的度谱

MATHIEU HOYRUP, TAKAYUKI KIHARA, VICTOR SELIVANOV
{"title":"紧凑抛光空间同构类型的度谱","authors":"MATHIEU HOYRUP, TAKAYUKI KIHARA, VICTOR SELIVANOV","doi":"10.1017/jsl.2023.93","DOIUrl":null,"url":null,"abstract":"<p>A Polish space is not always homeomorphic to a computably presented Polish space. In this article, we examine degrees of non-computability of presenting homeomorphic copies of compact Polish spaces. We show that there exists a <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231230111313840-0034:S0022481223000932:S0022481223000932_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbf {0}'$</span></span></img></span></span>-computable low<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231230111313840-0034:S0022481223000932:S0022481223000932_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$_3$</span></span></img></span></span> compact Polish space which is not homeomorphic to a computable one, and that, for any natural number <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231230111313840-0034:S0022481223000932:S0022481223000932_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$n\\geq 2$</span></span></img></span></span>, there exists a Polish space <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231230111313840-0034:S0022481223000932:S0022481223000932_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$X_n$</span></span></img></span></span> such that exactly the high<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231230111313840-0034:S0022481223000932:S0022481223000932_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$_{n}$</span></span></img></span></span>-degrees are required to present the homeomorphism type of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231230111313840-0034:S0022481223000932:S0022481223000932_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$X_n$</span></span></img></span></span>. Along the way we investigate the computable aspects of Čech homology groups. We also show that no compact Polish space has a least presentation with respect to Turing reducibility.</p>","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DEGREE SPECTRA OF HOMEOMORPHISM TYPE OF COMPACT POLISH SPACES\",\"authors\":\"MATHIEU HOYRUP, TAKAYUKI KIHARA, VICTOR SELIVANOV\",\"doi\":\"10.1017/jsl.2023.93\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A Polish space is not always homeomorphic to a computably presented Polish space. In this article, we examine degrees of non-computability of presenting homeomorphic copies of compact Polish spaces. We show that there exists a <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231230111313840-0034:S0022481223000932:S0022481223000932_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbf {0}'$</span></span></img></span></span>-computable low<span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231230111313840-0034:S0022481223000932:S0022481223000932_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$_3$</span></span></img></span></span> compact Polish space which is not homeomorphic to a computable one, and that, for any natural number <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231230111313840-0034:S0022481223000932:S0022481223000932_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$n\\\\geq 2$</span></span></img></span></span>, there exists a Polish space <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231230111313840-0034:S0022481223000932:S0022481223000932_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$X_n$</span></span></img></span></span> such that exactly the high<span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231230111313840-0034:S0022481223000932:S0022481223000932_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$_{n}$</span></span></img></span></span>-degrees are required to present the homeomorphism type of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231230111313840-0034:S0022481223000932:S0022481223000932_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$X_n$</span></span></img></span></span>. Along the way we investigate the computable aspects of Čech homology groups. We also show that no compact Polish space has a least presentation with respect to Turing reducibility.</p>\",\"PeriodicalId\":501300,\"journal\":{\"name\":\"The Journal of Symbolic Logic\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Symbolic Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/jsl.2023.93\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Symbolic Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jsl.2023.93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

波兰空间并不总是与可计算呈现的波兰空间同构。在这篇文章中,我们研究了紧凑波兰空间的同构副本的不可计算度。我们证明存在一个$\mathbf {0}'$ 可计算的低$_3$紧凑波兰空间,它不与可计算的紧凑波兰空间同构,并且对于任意自然数$n\geq 2$,存在一个波兰空间$X_n$,使得恰好需要高$_{n}$度来呈现$X_n$的同构类型。在此过程中,我们研究了 Čech 同调群的可计算性。我们还证明,就图灵还原性而言,没有一个紧凑波兰空间具有最小呈现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DEGREE SPECTRA OF HOMEOMORPHISM TYPE OF COMPACT POLISH SPACES

A Polish space is not always homeomorphic to a computably presented Polish space. In this article, we examine degrees of non-computability of presenting homeomorphic copies of compact Polish spaces. We show that there exists a $\mathbf {0}'$-computable low$_3$ compact Polish space which is not homeomorphic to a computable one, and that, for any natural number $n\geq 2$, there exists a Polish space $X_n$ such that exactly the high$_{n}$-degrees are required to present the homeomorphism type of $X_n$. Along the way we investigate the computable aspects of Čech homology groups. We also show that no compact Polish space has a least presentation with respect to Turing reducibility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信