The Journal of Symbolic Logic最新文献

筛选
英文 中文
ON RANK NOT ONLY IN NSOP THEORIES 不仅在 NSOP 理论中,而且在等级上
The Journal of Symbolic Logic Pub Date : 2024-02-12 DOI: 10.1017/jsl.2024.9
JAN DOBROWOLSKI, DANIEL MAX HOFFMANN
{"title":"ON RANK NOT ONLY IN NSOP THEORIES","authors":"JAN DOBROWOLSKI, DANIEL MAX HOFFMANN","doi":"10.1017/jsl.2024.9","DOIUrl":"https://doi.org/10.1017/jsl.2024.9","url":null,"abstract":"<p>We introduce a family of local ranks <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$D_Q$</span></span></img></span></span> depending on a finite set <span>Q</span> of pairs of the form <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$(varphi (x,y),q(y)),$</span></span></img></span></span> where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$varphi (x,y)$</span></span></img></span></span> is a formula and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$q(y)$</span></span></img></span></span> is a global type. We prove that in any NSOP<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$_1$</span></span></img></span></span> theory these ranks satisfy some desirable properties; in particular, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$D_Q(x=x)&lt;omega $</span></span></img></span></span> for any finite tuple of variables <span>x</span> and any <span>Q</span>, if <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$qsupseteq p$</span></span></img></span></span> is a Kim-forking extension of types, then <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$D_Q(q)&lt;D_Q(p)$</span></span></img></span></span> for some <span>Q</span>, and if <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$qsupseteq p$</span></spa","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140587758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A HIERARCHY ON NON-ARCHIMEDEAN POLISH GROUPS ADMITTING A COMPATIBLE COMPLETE LEFT-INVARIANT METRIC 允許相容完整左不變度量的非archimedean拋光群上的階級結構
The Journal of Symbolic Logic Pub Date : 2024-02-06 DOI: 10.1017/jsl.2024.7
LONGYUN DING, XU WANG
{"title":"A HIERARCHY ON NON-ARCHIMEDEAN POLISH GROUPS ADMITTING A COMPATIBLE COMPLETE LEFT-INVARIANT METRIC","authors":"LONGYUN DING, XU WANG","doi":"10.1017/jsl.2024.7","DOIUrl":"https://doi.org/10.1017/jsl.2024.7","url":null,"abstract":"<p>In this article, we introduce a hierarchy on the class of non-archimedean Polish groups that admit a compatible complete left-invariant metric. We denote this hierarchy by <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226125007514-0272:S0022481224000070:S0022481224000070_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$alpha $</span></span></img></span></span>-CLI and L-<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226125007514-0272:S0022481224000070:S0022481224000070_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$alpha $</span></span></img></span></span>-CLI where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226125007514-0272:S0022481224000070:S0022481224000070_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$alpha $</span></span></img></span></span> is a countable ordinal. We establish three results: </p><ol><li><p><span>(1)</span> <span>G</span> is <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226125007514-0272:S0022481224000070:S0022481224000070_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$0$</span></span></img></span></span>-CLI iff <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226125007514-0272:S0022481224000070:S0022481224000070_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$G={1_G}$</span></span></img></span></span>;</p></li><li><p><span>(2)</span> <span>G</span> is <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226125007514-0272:S0022481224000070:S0022481224000070_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$1$</span></span></img></span></span>-CLI iff <span>G</span> admits a compatible complete two-sided invariant metric; and</p></li><li><p><span>(3)</span> <span>G</span> is L-<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226125007514-0272:S0022481224000070:S0022481224000070_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$alpha $</span></span></img></span></span>-CLI iff <span>G</span> is locally <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226125007514-0272:S0022481224000070:S0022481224000070_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$alpha $</span></span></img></span></span>-CLI, i.e., <span>G</span> contains an open subgroup that is <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140011282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BETWEENNESS ALGEBRAS 间隔数
The Journal of Symbolic Logic Pub Date : 2024-02-06 DOI: 10.1017/jsl.2023.86
IVO DÜNTSCH, RAFAŁ GRUSZCZYŃSKI, PAULA MENCHÓN
{"title":"BETWEENNESS ALGEBRAS","authors":"IVO DÜNTSCH, RAFAŁ GRUSZCZYŃSKI, PAULA MENCHÓN","doi":"10.1017/jsl.2023.86","DOIUrl":"https://doi.org/10.1017/jsl.2023.86","url":null,"abstract":"We introduce and study a class of <jats:italic>betweenness algebras</jats:italic>—Boolean algebras with binary operators, closely related to ternary frames with a betweenness relation. From various axioms for betweenness, we chose those that are most common, which makes our work applicable to a wide range of betweenness structures studied in the literature. On the algebraic side, we work with two operators of <jats:italic>possibility</jats:italic> and of <jats:italic>sufficiency</jats:italic>.","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139760278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
THE PENTAGON AS A SUBSTRUCTURE LATTICE OF MODELS OF PEANO ARITHMETIC 五边形作为皮亚诺算术模型的子结构网格
The Journal of Symbolic Logic Pub Date : 2024-01-29 DOI: 10.1017/jsl.2024.6
JAMES H. SCHMERL
{"title":"THE PENTAGON AS A SUBSTRUCTURE LATTICE OF MODELS OF PEANO ARITHMETIC","authors":"JAMES H. SCHMERL","doi":"10.1017/jsl.2024.6","DOIUrl":"https://doi.org/10.1017/jsl.2024.6","url":null,"abstract":"<p>Wilkie proved in 1977 that every countable model <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline1.png\"><span data-mathjax-type=\"texmath\"><span>${mathcal M}$</span></span></img></span></span> of Peano Arithmetic has an elementary end extension <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline2.png\"><span data-mathjax-type=\"texmath\"><span>${mathcal N}$</span></span></img></span></span> such that the interstructure lattice <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$operatorname {mathrm {Lt}}({mathcal N} / {mathcal M})$</span></span></img></span></span> is the pentagon lattice <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline4.png\"><span data-mathjax-type=\"texmath\"><span>${mathbf N}_5$</span></span></img></span></span>. This theorem implies that every countable nonstandard <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline5.png\"><span data-mathjax-type=\"texmath\"><span>${mathcal M}$</span></span></img></span></span> has an elementary cofinal extension <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline6.png\"><span data-mathjax-type=\"texmath\"><span>${mathcal N}$</span></span></img></span></span> such that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$operatorname {mathrm {Lt}}({mathcal N} / {mathcal M}) cong {mathbf N}_5$</span></span></img></span></span>. It is proved here that whenever <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline8.png\"><span data-mathjax-type=\"texmath\"><span>${mathcal M} prec {mathcal N} models mathsf {PA}$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline9.png\"><span dat","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140811420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
REGAININGLY APPROXIMABLE NUMBERS AND SETS 回归近似数和集合
The Journal of Symbolic Logic Pub Date : 2024-01-22 DOI: 10.1017/jsl.2024.5
PETER HERTLING, RUPERT HÖLZL, PHILIP JANICKI
{"title":"REGAININGLY APPROXIMABLE NUMBERS AND SETS","authors":"PETER HERTLING, RUPERT HÖLZL, PHILIP JANICKI","doi":"10.1017/jsl.2024.5","DOIUrl":"https://doi.org/10.1017/jsl.2024.5","url":null,"abstract":"<p>We call an <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240227060042912-0720:S0022481224000057:S0022481224000057_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$alpha in mathbb {R}$</span></span></img></span></span> <span>regainingly approximable</span> if there exists a computable nondecreasing sequence <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240227060042912-0720:S0022481224000057:S0022481224000057_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$(a_n)_n$</span></span></img></span></span> of rational numbers converging to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240227060042912-0720:S0022481224000057:S0022481224000057_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$alpha $</span></span></img></span></span> with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240227060042912-0720:S0022481224000057:S0022481224000057_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$alpha - a_n &lt; 2^{-n}$</span></span></img></span></span> for infinitely many <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240227060042912-0720:S0022481224000057:S0022481224000057_inline5.png\"><span data-mathjax-type=\"texmath\"><span>${n in mathbb {N}}$</span></span></img></span></span>. We also call a set <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240227060042912-0720:S0022481224000057:S0022481224000057_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$Asubseteq mathbb {N}$</span></span></img></span></span> <span>regainingly approximable</span> if it is c.e. and the strongly left-computable number <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240227060042912-0720:S0022481224000057:S0022481224000057_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$2^{-A}$</span></span></img></span></span> is regainingly approximable. We show that the set of regainingly approximable sets is neither closed under union nor intersection and that every c.e. Turing degree contains such a set. Furthermore, the regainingly approximable numbers lie properly between the computable and the left-computable numbers and are not closed under addition. While regainingly approximable numbers are easily seen to be i.o. <span>K</span>-trivial, we construct such an <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240227060042912-0720:S0022481224000057:S0022481224000057_inline8.png\"","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140007945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
POLISH SPACE PARTITION PRINCIPLES AND THE HALPERN-LÄUCHLI THEOREM 抛光空间分割原理和哈尔彭-莱乌赫利定理
The Journal of Symbolic Logic Pub Date : 2024-01-19 DOI: 10.1017/jsl.2024.4
C. Lambie-Hanson, Andy Zucker
{"title":"POLISH SPACE PARTITION PRINCIPLES AND THE HALPERN-LÄUCHLI THEOREM","authors":"C. Lambie-Hanson, Andy Zucker","doi":"10.1017/jsl.2024.4","DOIUrl":"https://doi.org/10.1017/jsl.2024.4","url":null,"abstract":"","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139612799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DEGREE OF SATISFIABILITY IN HEYTING ALGEBRAS 黑汀代数的可满足度
The Journal of Symbolic Logic Pub Date : 2024-01-09 DOI: 10.1017/jsl.2024.2
BENJAMIN MERLIN BUMPUS, ZOLTAN A. KOCSIS
{"title":"DEGREE OF SATISFIABILITY IN HEYTING ALGEBRAS","authors":"BENJAMIN MERLIN BUMPUS, ZOLTAN A. KOCSIS","doi":"10.1017/jsl.2024.2","DOIUrl":"https://doi.org/10.1017/jsl.2024.2","url":null,"abstract":"<p>We investigate degree of satisfiability questions in the context of Heyting algebras and intuitionistic logic. We classify all equations in one free variable with respect to finite satisfiability gap, and determine which common principles of classical logic in multiple free variables have finite satisfiability gap. In particular we prove that, in a finite non-Boolean Heyting algebra, the probability that a randomly chosen element satisfies <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226124105987-0144:S0022481224000021:S0022481224000021_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$x vee neg x = top $</span></span></img></span></span> is no larger than <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226124105987-0144:S0022481224000021:S0022481224000021_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$frac {2}{3}$</span></span></img></span></span>. Finally, we generalize our results to infinite Heyting algebras, and present their applications to point-set topology, black-box algebras, and the philosophy of logic.</p>","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140007920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
THE BAIRE CLOSURE AND ITS LOGIC 贝叶封闭及其逻辑
The Journal of Symbolic Logic Pub Date : 2024-01-05 DOI: 10.1017/jsl.2024.1
G. BEZHANISHVILI, D. FERNÁNDEZ-DUQUE
{"title":"THE BAIRE CLOSURE AND ITS LOGIC","authors":"G. BEZHANISHVILI, D. FERNÁNDEZ-DUQUE","doi":"10.1017/jsl.2024.1","DOIUrl":"https://doi.org/10.1017/jsl.2024.1","url":null,"abstract":"<p>The Baire algebra of a topological space <span>X</span> is the quotient of the algebra of all subsets of <span>X</span> modulo the meager sets. We show that this Boolean algebra can be endowed with a natural closure operator, resulting in a closure algebra which we denote <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240127131651504-0594:S002248122400001X:S002248122400001X_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$mathbf {Baire}(X)$</span></span></img></span></span>. We identify the modal logic of such algebras to be the well-known system <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240127131651504-0594:S002248122400001X:S002248122400001X_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$mathsf {S5}$</span></span></img></span></span>, and prove soundness and strong completeness for the cases where <span>X</span> is crowded and either completely metrizable and continuum-sized or locally compact Hausdorff. We also show that every extension of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240127131651504-0594:S002248122400001X:S002248122400001X_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$mathsf {S5}$</span></span></img></span></span> is the modal logic of a subalgebra of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240127131651504-0594:S002248122400001X:S002248122400001X_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$mathbf {Baire}(X)$</span></span></img></span></span>, and that soundness and strong completeness also holds in the language with the universal modality.</p>","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139582440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Note on implying 关于暗示的说明
The Journal of Symbolic Logic Pub Date : 2024-01-04 DOI: 10.1017/jsl.2023.98
Sean Cody
{"title":"Note on implying","authors":"Sean Cody","doi":"10.1017/jsl.2023.98","DOIUrl":"https://doi.org/10.1017/jsl.2023.98","url":null,"abstract":"","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139385176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ON COMPACTNESS OF WEAK SQUARE AT SINGULARS OF UNCOUNTABLE COFINALITY 关于不可数奇点处弱平方的紧凑性
The Journal of Symbolic Logic Pub Date : 2024-01-04 DOI: 10.1017/jsl.2023.101
MAXWELL LEVINE
{"title":"ON COMPACTNESS OF WEAK SQUARE AT SINGULARS OF UNCOUNTABLE COFINALITY","authors":"MAXWELL LEVINE","doi":"10.1017/jsl.2023.101","DOIUrl":"https://doi.org/10.1017/jsl.2023.101","url":null,"abstract":"<p>Cummings, Foreman, and Magidor proved that Jensen’s square principle is non-compact at <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240418113432529-0233:S0022481223001019:S0022481223001019_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$aleph _omega $</span></span></img></span></span>, meaning that it is consistent that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240418113432529-0233:S0022481223001019:S0022481223001019_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$square _{aleph _n}$</span></span></img></span></span> holds for all <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240418113432529-0233:S0022481223001019:S0022481223001019_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$n&lt;omega $</span></span></img></span></span> while <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240418113432529-0233:S0022481223001019:S0022481223001019_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$square _{aleph _omega }$</span></span></img></span></span> fails. We investigate the natural question of whether this phenomenon generalizes to singulars of uncountable cofinality. Surprisingly, we show that under some mild <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240418113432529-0233:S0022481223001019:S0022481223001019_inline5.png\"><span data-mathjax-type=\"texmath\"><span>${{mathsf {PCF}}}$</span></span></img></span></span>-theoretic hypotheses, the weak square principle <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240418113432529-0233:S0022481223001019:S0022481223001019_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$square _kappa ^*$</span></span></img></span></span> is in fact compact at singulars of uncountable cofinality.</p>","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140626115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信