REGAININGLY APPROXIMABLE NUMBERS AND SETS

PETER HERTLING, RUPERT HÖLZL, PHILIP JANICKI
{"title":"REGAININGLY APPROXIMABLE NUMBERS AND SETS","authors":"PETER HERTLING, RUPERT HÖLZL, PHILIP JANICKI","doi":"10.1017/jsl.2024.5","DOIUrl":null,"url":null,"abstract":"<p>We call an <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240227060042912-0720:S0022481224000057:S0022481224000057_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\alpha \\in \\mathbb {R}$</span></span></img></span></span> <span>regainingly approximable</span> if there exists a computable nondecreasing sequence <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240227060042912-0720:S0022481224000057:S0022481224000057_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$(a_n)_n$</span></span></img></span></span> of rational numbers converging to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240227060042912-0720:S0022481224000057:S0022481224000057_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\alpha $</span></span></img></span></span> with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240227060042912-0720:S0022481224000057:S0022481224000057_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\alpha - a_n &lt; 2^{-n}$</span></span></img></span></span> for infinitely many <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240227060042912-0720:S0022481224000057:S0022481224000057_inline5.png\"><span data-mathjax-type=\"texmath\"><span>${n \\in \\mathbb {N}}$</span></span></img></span></span>. We also call a set <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240227060042912-0720:S0022481224000057:S0022481224000057_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$A\\subseteq \\mathbb {N}$</span></span></img></span></span> <span>regainingly approximable</span> if it is c.e. and the strongly left-computable number <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240227060042912-0720:S0022481224000057:S0022481224000057_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$2^{-A}$</span></span></img></span></span> is regainingly approximable. We show that the set of regainingly approximable sets is neither closed under union nor intersection and that every c.e. Turing degree contains such a set. Furthermore, the regainingly approximable numbers lie properly between the computable and the left-computable numbers and are not closed under addition. While regainingly approximable numbers are easily seen to be i.o. <span>K</span>-trivial, we construct such an <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240227060042912-0720:S0022481224000057:S0022481224000057_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$\\alpha $</span></span></img></span></span> such that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240227060042912-0720:S0022481224000057:S0022481224000057_inline9.png\"><span data-mathjax-type=\"texmath\"><span>${K(\\alpha \\restriction n)&gt;n}$</span></span></img></span></span> for infinitely many <span>n</span>. Similarly, there exist regainingly approximable sets whose initial segment complexity infinitely often reaches the maximum possible for c.e. sets. Finally, there is a uniform algorithm splitting regular real numbers into two regainingly approximable numbers that are still regular.</p>","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Symbolic Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jsl.2024.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We call an Abstract Image$\alpha \in \mathbb {R}$ regainingly approximable if there exists a computable nondecreasing sequence Abstract Image$(a_n)_n$ of rational numbers converging to Abstract Image$\alpha $ with Abstract Image$\alpha - a_n < 2^{-n}$ for infinitely many Abstract Image${n \in \mathbb {N}}$. We also call a set Abstract Image$A\subseteq \mathbb {N}$ regainingly approximable if it is c.e. and the strongly left-computable number Abstract Image$2^{-A}$ is regainingly approximable. We show that the set of regainingly approximable sets is neither closed under union nor intersection and that every c.e. Turing degree contains such a set. Furthermore, the regainingly approximable numbers lie properly between the computable and the left-computable numbers and are not closed under addition. While regainingly approximable numbers are easily seen to be i.o. K-trivial, we construct such an Abstract Image$\alpha $ such that Abstract Image${K(\alpha \restriction n)>n}$ for infinitely many n. Similarly, there exist regainingly approximable sets whose initial segment complexity infinitely often reaches the maximum possible for c.e. sets. Finally, there is a uniform algorithm splitting regular real numbers into two regainingly approximable numbers that are still regular.

回归近似数和集合
如果存在一个可计算的非递减有理数序列$(a_n)_n$,对于无限多的${n \ in \mathbb {N}}$来说,该序列以$\alpha - a_n < 2^{-n}$收敛于$\alpha$,那么我们称$\alpha \ in \mathbb {R}$为可重获逼近。如果一个集合 $A\subseteq \mathbb {N}$ 是 c.e.的,并且强左可计算数 $2^{-A}$ 是可重获近似的,那么我们也称这个集合为可重获近似集合。我们证明了可恢复逼近集合的集合既不封闭于并集也不封闭于交集,而且每个 c.e. 图灵度都包含这样一个集合。此外,可再近似数恰当地位于可计算数和左可计算数之间,并且在加法下不封闭。虽然我们很容易看到可重现近似数是i.o. K-trivial的,但我们构造了这样一个$\alpha $,使得${K(\alpha \restriction n)>n}$对于无限多的n。最后,有一种统一算法可以把有规律的实数分成两个仍然有规律的可再近似数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信