{"title":"关于不可数奇点处弱平方的紧凑性","authors":"MAXWELL LEVINE","doi":"10.1017/jsl.2023.101","DOIUrl":null,"url":null,"abstract":"<p>Cummings, Foreman, and Magidor proved that Jensen’s square principle is non-compact at <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240418113432529-0233:S0022481223001019:S0022481223001019_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\aleph _\\omega $</span></span></img></span></span>, meaning that it is consistent that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240418113432529-0233:S0022481223001019:S0022481223001019_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\square _{\\aleph _n}$</span></span></img></span></span> holds for all <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240418113432529-0233:S0022481223001019:S0022481223001019_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$n<\\omega $</span></span></img></span></span> while <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240418113432529-0233:S0022481223001019:S0022481223001019_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\square _{\\aleph _\\omega }$</span></span></img></span></span> fails. We investigate the natural question of whether this phenomenon generalizes to singulars of uncountable cofinality. Surprisingly, we show that under some mild <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240418113432529-0233:S0022481223001019:S0022481223001019_inline5.png\"><span data-mathjax-type=\"texmath\"><span>${{\\mathsf {PCF}}}$</span></span></img></span></span>-theoretic hypotheses, the weak square principle <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240418113432529-0233:S0022481223001019:S0022481223001019_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\square _\\kappa ^*$</span></span></img></span></span> is in fact compact at singulars of uncountable cofinality.</p>","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON COMPACTNESS OF WEAK SQUARE AT SINGULARS OF UNCOUNTABLE COFINALITY\",\"authors\":\"MAXWELL LEVINE\",\"doi\":\"10.1017/jsl.2023.101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cummings, Foreman, and Magidor proved that Jensen’s square principle is non-compact at <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240418113432529-0233:S0022481223001019:S0022481223001019_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\aleph _\\\\omega $</span></span></img></span></span>, meaning that it is consistent that <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240418113432529-0233:S0022481223001019:S0022481223001019_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\square _{\\\\aleph _n}$</span></span></img></span></span> holds for all <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240418113432529-0233:S0022481223001019:S0022481223001019_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$n<\\\\omega $</span></span></img></span></span> while <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240418113432529-0233:S0022481223001019:S0022481223001019_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\square _{\\\\aleph _\\\\omega }$</span></span></img></span></span> fails. We investigate the natural question of whether this phenomenon generalizes to singulars of uncountable cofinality. Surprisingly, we show that under some mild <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240418113432529-0233:S0022481223001019:S0022481223001019_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${{\\\\mathsf {PCF}}}$</span></span></img></span></span>-theoretic hypotheses, the weak square principle <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240418113432529-0233:S0022481223001019:S0022481223001019_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\square _\\\\kappa ^*$</span></span></img></span></span> is in fact compact at singulars of uncountable cofinality.</p>\",\"PeriodicalId\":501300,\"journal\":{\"name\":\"The Journal of Symbolic Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Symbolic Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/jsl.2023.101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Symbolic Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jsl.2023.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ON COMPACTNESS OF WEAK SQUARE AT SINGULARS OF UNCOUNTABLE COFINALITY
Cummings, Foreman, and Magidor proved that Jensen’s square principle is non-compact at $\aleph _\omega $, meaning that it is consistent that $\square _{\aleph _n}$ holds for all $n<\omega $ while $\square _{\aleph _\omega }$ fails. We investigate the natural question of whether this phenomenon generalizes to singulars of uncountable cofinality. Surprisingly, we show that under some mild ${{\mathsf {PCF}}}$-theoretic hypotheses, the weak square principle $\square _\kappa ^*$ is in fact compact at singulars of uncountable cofinality.