五边形作为皮亚诺算术模型的子结构网格

JAMES H. SCHMERL
{"title":"五边形作为皮亚诺算术模型的子结构网格","authors":"JAMES H. SCHMERL","doi":"10.1017/jsl.2024.6","DOIUrl":null,"url":null,"abstract":"<p>Wilkie proved in 1977 that every countable model <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline1.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal M}$</span></span></img></span></span> of Peano Arithmetic has an elementary end extension <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline2.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal N}$</span></span></img></span></span> such that the interstructure lattice <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\operatorname {\\mathrm {Lt}}({\\mathcal N} / {\\mathcal M})$</span></span></img></span></span> is the pentagon lattice <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline4.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbf N}_5$</span></span></img></span></span>. This theorem implies that every countable nonstandard <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline5.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal M}$</span></span></img></span></span> has an elementary cofinal extension <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline6.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal N}$</span></span></img></span></span> such that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\operatorname {\\mathrm {Lt}}({\\mathcal N} / {\\mathcal M}) \\cong {\\mathbf N}_5$</span></span></img></span></span>. It is proved here that whenever <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline8.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal M} \\prec {\\mathcal N} \\models \\mathsf {PA}$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$\\operatorname {\\mathrm {Lt}}({\\mathcal N} / {\\mathcal M}) \\cong {\\mathbf N}_5$</span></span></img></span></span>, then <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline10.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal N}$</span></span></img></span></span> must be either an end or a cofinal extension of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline11.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal M}$</span></span></img></span></span>. In contrast, there are <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline12.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal M}^* \\prec {\\mathcal N}^* \\models \\mathsf {PA}^*$</span></span></img></span></span> such that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline13.png\"><span data-mathjax-type=\"texmath\"><span>$\\operatorname {\\mathrm {Lt}}({\\mathcal N}^* / {\\mathcal M}^*) \\cong {\\mathbf N}_5$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline14.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal N}^*$</span></span></img></span></span> is neither an end nor a cofinal extension of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline15.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal M}^*$</span></span></img></span></span>.</p>","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THE PENTAGON AS A SUBSTRUCTURE LATTICE OF MODELS OF PEANO ARITHMETIC\",\"authors\":\"JAMES H. SCHMERL\",\"doi\":\"10.1017/jsl.2024.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Wilkie proved in 1977 that every countable model <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathcal M}$</span></span></img></span></span> of Peano Arithmetic has an elementary end extension <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathcal N}$</span></span></img></span></span> such that the interstructure lattice <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\operatorname {\\\\mathrm {Lt}}({\\\\mathcal N} / {\\\\mathcal M})$</span></span></img></span></span> is the pentagon lattice <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathbf N}_5$</span></span></img></span></span>. This theorem implies that every countable nonstandard <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathcal M}$</span></span></img></span></span> has an elementary cofinal extension <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathcal N}$</span></span></img></span></span> such that <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\operatorname {\\\\mathrm {Lt}}({\\\\mathcal N} / {\\\\mathcal M}) \\\\cong {\\\\mathbf N}_5$</span></span></img></span></span>. It is proved here that whenever <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathcal M} \\\\prec {\\\\mathcal N} \\\\models \\\\mathsf {PA}$</span></span></img></span></span> and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\operatorname {\\\\mathrm {Lt}}({\\\\mathcal N} / {\\\\mathcal M}) \\\\cong {\\\\mathbf N}_5$</span></span></img></span></span>, then <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathcal N}$</span></span></img></span></span> must be either an end or a cofinal extension of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline11.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathcal M}$</span></span></img></span></span>. In contrast, there are <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline12.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathcal M}^* \\\\prec {\\\\mathcal N}^* \\\\models \\\\mathsf {PA}^*$</span></span></img></span></span> such that <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline13.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\operatorname {\\\\mathrm {Lt}}({\\\\mathcal N}^* / {\\\\mathcal M}^*) \\\\cong {\\\\mathbf N}_5$</span></span></img></span></span> and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline14.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathcal N}^*$</span></span></img></span></span> is neither an end nor a cofinal extension of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline15.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathcal M}^*$</span></span></img></span></span>.</p>\",\"PeriodicalId\":501300,\"journal\":{\"name\":\"The Journal of Symbolic Logic\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Symbolic Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/jsl.2024.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Symbolic Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jsl.2024.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

威尔基(Wilkie)在1977年证明了每一个皮亚诺算术的可数模型${/mathcal M}$都有一个基本末端扩展${/mathcal N}$,使得结构间网格$operatorname {\mathrm {Lt}}({\mathcal N} / {\mathcal M})$ 是五边形网格${/mathbf N}_5$。这个定理意味着,每一个可数非标准 ${\mathcal M}$ 都有一个基本同尾扩展 ${\mathcal N}$ ,使得 $\operatorname {mathrm {Lt}}({\mathcal N} / {\mathcal M}) \cong {\mathbf N}_5$.这里证明,只要 ${\mathcal M}\就可以证明\且 $\operatorname {\mathrm {Lt}}({\mathcal N} / {\mathcal M}) \cong {\mathbf N}_5$ 时,那么 ${mathcal N}$ 一定是 ${mathcal M}$ 的末尾或共末尾扩展。相反地有 ${\mathcal M}^* \prec {\mathcal N}^* \models \mathsf {PA}^*$ 使得 $\operatorname {mathrm {Lt}}({\mathcal N}^* / {\mathcal M}^*) \cong {\mathbf N}_5$ 并且 ${\mathcal N}^*$ 既不是末端也不是 ${\mathcal M}^*$ 的同末端扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
THE PENTAGON AS A SUBSTRUCTURE LATTICE OF MODELS OF PEANO ARITHMETIC

Wilkie proved in 1977 that every countable model ${\mathcal M}$ of Peano Arithmetic has an elementary end extension ${\mathcal N}$ such that the interstructure lattice $\operatorname {\mathrm {Lt}}({\mathcal N} / {\mathcal M})$ is the pentagon lattice ${\mathbf N}_5$. This theorem implies that every countable nonstandard ${\mathcal M}$ has an elementary cofinal extension ${\mathcal N}$ such that $\operatorname {\mathrm {Lt}}({\mathcal N} / {\mathcal M}) \cong {\mathbf N}_5$. It is proved here that whenever ${\mathcal M} \prec {\mathcal N} \models \mathsf {PA}$ and $\operatorname {\mathrm {Lt}}({\mathcal N} / {\mathcal M}) \cong {\mathbf N}_5$, then ${\mathcal N}$ must be either an end or a cofinal extension of ${\mathcal M}$. In contrast, there are ${\mathcal M}^* \prec {\mathcal N}^* \models \mathsf {PA}^*$ such that $\operatorname {\mathrm {Lt}}({\mathcal N}^* / {\mathcal M}^*) \cong {\mathbf N}_5$ and ${\mathcal N}^*$ is neither an end nor a cofinal extension of ${\mathcal M}^*$.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信