{"title":"不仅在 NSOP 理论中,而且在等级上","authors":"JAN DOBROWOLSKI, DANIEL MAX HOFFMANN","doi":"10.1017/jsl.2024.9","DOIUrl":null,"url":null,"abstract":"<p>We introduce a family of local ranks <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$D_Q$</span></span></img></span></span> depending on a finite set <span>Q</span> of pairs of the form <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$(\\varphi (x,y),q(y)),$</span></span></img></span></span> where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\varphi (x,y)$</span></span></img></span></span> is a formula and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$q(y)$</span></span></img></span></span> is a global type. We prove that in any NSOP<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$_1$</span></span></img></span></span> theory these ranks satisfy some desirable properties; in particular, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$D_Q(x=x)<\\omega $</span></span></img></span></span> for any finite tuple of variables <span>x</span> and any <span>Q</span>, if <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$q\\supseteq p$</span></span></img></span></span> is a Kim-forking extension of types, then <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$D_Q(q)<D_Q(p)$</span></span></img></span></span> for some <span>Q</span>, and if <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$q\\supseteq p$</span></span></img></span></span> is a Kim-non-forking extension, then <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$D_Q(q)=D_Q(p)$</span></span></img></span></span> for every <span>Q</span> that involves only invariant types whose Morley powers are <img mimesubtype=\"png\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline12.png?pub-status=live\" type=\"\">-stationary. We give natural examples of families of invariant types satisfying this property in some NSOP<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline13.png\"><span data-mathjax-type=\"texmath\"><span>$_1$</span></span></img></span></span> theories.</img></p><p>We also answer a question of Granger about equivalence of dividing and dividing finitely in the theory <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline14.png\"><span data-mathjax-type=\"texmath\"><span>$T_\\infty $</span></span></img></span></span> of vector spaces with a generic bilinear form. We conclude that forking equals dividing in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline15.png\"><span data-mathjax-type=\"texmath\"><span>$T_\\infty $</span></span></img></span></span>, strengthening an earlier observation that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline16.png\"><span data-mathjax-type=\"texmath\"><span>$T_\\infty $</span></span></img></span></span> satisfies the existence axiom for forking independence.</p><p>Finally, we slightly modify our definitions and go beyond NSOP<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline17.png\"><span data-mathjax-type=\"texmath\"><span>$_1$</span></span></img></span></span> to find out that our local ranks are bounded by the well-known ranks: the inp-rank (<span>burden</span>), and hence, in particular, by the dp-rank. Therefore, our local ranks are finite provided that the dp-rank is finite, for example, if <span>T</span> is dp-minimal. Hence, our notion of rank identifies a non-trivial class of theories containing all NSOP<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline18.png\"/><span data-mathjax-type=\"texmath\"><span>$_1$</span></span></span></span> and NTP<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline19.png\"/><span data-mathjax-type=\"texmath\"><span>$_2$</span></span></span></span> theories.</p>","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON RANK NOT ONLY IN NSOP THEORIES\",\"authors\":\"JAN DOBROWOLSKI, DANIEL MAX HOFFMANN\",\"doi\":\"10.1017/jsl.2024.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce a family of local ranks <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$D_Q$</span></span></img></span></span> depending on a finite set <span>Q</span> of pairs of the form <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$(\\\\varphi (x,y),q(y)),$</span></span></img></span></span> where <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\varphi (x,y)$</span></span></img></span></span> is a formula and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$q(y)$</span></span></img></span></span> is a global type. We prove that in any NSOP<span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$_1$</span></span></img></span></span> theory these ranks satisfy some desirable properties; in particular, <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$D_Q(x=x)<\\\\omega $</span></span></img></span></span> for any finite tuple of variables <span>x</span> and any <span>Q</span>, if <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$q\\\\supseteq p$</span></span></img></span></span> is a Kim-forking extension of types, then <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$D_Q(q)<D_Q(p)$</span></span></img></span></span> for some <span>Q</span>, and if <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$q\\\\supseteq p$</span></span></img></span></span> is a Kim-non-forking extension, then <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline11.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$D_Q(q)=D_Q(p)$</span></span></img></span></span> for every <span>Q</span> that involves only invariant types whose Morley powers are <img mimesubtype=\\\"png\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline12.png?pub-status=live\\\" type=\\\"\\\">-stationary. We give natural examples of families of invariant types satisfying this property in some NSOP<span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline13.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$_1$</span></span></img></span></span> theories.</img></p><p>We also answer a question of Granger about equivalence of dividing and dividing finitely in the theory <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline14.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$T_\\\\infty $</span></span></img></span></span> of vector spaces with a generic bilinear form. We conclude that forking equals dividing in <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline15.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$T_\\\\infty $</span></span></img></span></span>, strengthening an earlier observation that <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline16.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$T_\\\\infty $</span></span></img></span></span> satisfies the existence axiom for forking independence.</p><p>Finally, we slightly modify our definitions and go beyond NSOP<span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline17.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$_1$</span></span></img></span></span> to find out that our local ranks are bounded by the well-known ranks: the inp-rank (<span>burden</span>), and hence, in particular, by the dp-rank. Therefore, our local ranks are finite provided that the dp-rank is finite, for example, if <span>T</span> is dp-minimal. Hence, our notion of rank identifies a non-trivial class of theories containing all NSOP<span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline18.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$_1$</span></span></span></span> and NTP<span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline19.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$_2$</span></span></span></span> theories.</p>\",\"PeriodicalId\":501300,\"journal\":{\"name\":\"The Journal of Symbolic Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Symbolic Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/jsl.2024.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Symbolic Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jsl.2024.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We introduce a family of local ranks $D_Q$ depending on a finite set Q of pairs of the form $(\varphi (x,y),q(y)),$ where $\varphi (x,y)$ is a formula and $q(y)$ is a global type. We prove that in any NSOP$_1$ theory these ranks satisfy some desirable properties; in particular, $D_Q(x=x)<\omega $ for any finite tuple of variables x and any Q, if $q\supseteq p$ is a Kim-forking extension of types, then $D_Q(q)<D_Q(p)$ for some Q, and if $q\supseteq p$ is a Kim-non-forking extension, then $D_Q(q)=D_Q(p)$ for every Q that involves only invariant types whose Morley powers are -stationary. We give natural examples of families of invariant types satisfying this property in some NSOP$_1$ theories.
We also answer a question of Granger about equivalence of dividing and dividing finitely in the theory $T_\infty $ of vector spaces with a generic bilinear form. We conclude that forking equals dividing in $T_\infty $, strengthening an earlier observation that $T_\infty $ satisfies the existence axiom for forking independence.
Finally, we slightly modify our definitions and go beyond NSOP$_1$ to find out that our local ranks are bounded by the well-known ranks: the inp-rank (burden), and hence, in particular, by the dp-rank. Therefore, our local ranks are finite provided that the dp-rank is finite, for example, if T is dp-minimal. Hence, our notion of rank identifies a non-trivial class of theories containing all NSOP$_1$ and NTP$_2$ theories.