{"title":"黑汀代数的可满足度","authors":"BENJAMIN MERLIN BUMPUS, ZOLTAN A. KOCSIS","doi":"10.1017/jsl.2024.2","DOIUrl":null,"url":null,"abstract":"<p>We investigate degree of satisfiability questions in the context of Heyting algebras and intuitionistic logic. We classify all equations in one free variable with respect to finite satisfiability gap, and determine which common principles of classical logic in multiple free variables have finite satisfiability gap. In particular we prove that, in a finite non-Boolean Heyting algebra, the probability that a randomly chosen element satisfies <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226124105987-0144:S0022481224000021:S0022481224000021_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$x \\vee \\neg x = \\top $</span></span></img></span></span> is no larger than <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226124105987-0144:S0022481224000021:S0022481224000021_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\frac {2}{3}$</span></span></img></span></span>. Finally, we generalize our results to infinite Heyting algebras, and present their applications to point-set topology, black-box algebras, and the philosophy of logic.</p>","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":"80 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DEGREE OF SATISFIABILITY IN HEYTING ALGEBRAS\",\"authors\":\"BENJAMIN MERLIN BUMPUS, ZOLTAN A. KOCSIS\",\"doi\":\"10.1017/jsl.2024.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate degree of satisfiability questions in the context of Heyting algebras and intuitionistic logic. We classify all equations in one free variable with respect to finite satisfiability gap, and determine which common principles of classical logic in multiple free variables have finite satisfiability gap. In particular we prove that, in a finite non-Boolean Heyting algebra, the probability that a randomly chosen element satisfies <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226124105987-0144:S0022481224000021:S0022481224000021_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$x \\\\vee \\\\neg x = \\\\top $</span></span></img></span></span> is no larger than <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226124105987-0144:S0022481224000021:S0022481224000021_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\frac {2}{3}$</span></span></img></span></span>. Finally, we generalize our results to infinite Heyting algebras, and present their applications to point-set topology, black-box algebras, and the philosophy of logic.</p>\",\"PeriodicalId\":501300,\"journal\":{\"name\":\"The Journal of Symbolic Logic\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Symbolic Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/jsl.2024.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Symbolic Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jsl.2024.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We investigate degree of satisfiability questions in the context of Heyting algebras and intuitionistic logic. We classify all equations in one free variable with respect to finite satisfiability gap, and determine which common principles of classical logic in multiple free variables have finite satisfiability gap. In particular we prove that, in a finite non-Boolean Heyting algebra, the probability that a randomly chosen element satisfies $x \vee \neg x = \top $ is no larger than $\frac {2}{3}$. Finally, we generalize our results to infinite Heyting algebras, and present their applications to point-set topology, black-box algebras, and the philosophy of logic.