奇异红衣主教后继者的强树和超树属性

WILLIAM ADKISSON
{"title":"奇异红衣主教后继者的强树和超树属性","authors":"WILLIAM ADKISSON","doi":"10.1017/jsl.2023.96","DOIUrl":null,"url":null,"abstract":"<p>The strong tree property and ITP (also called the super tree property) are generalizations of the tree property that characterize strong compactness and supercompactness up to inaccessibility. That is, an inaccessible cardinal <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240205102020887-0367:S0022481223000968:S0022481223000968_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\kappa $</span></span></img></span></span> is strongly compact if and only if the strong tree property holds at <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240205102020887-0367:S0022481223000968:S0022481223000968_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\kappa $</span></span></img></span></span>, and supercompact if and only if ITP holds at <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240205102020887-0367:S0022481223000968:S0022481223000968_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\kappa $</span></span></img></span></span>. We present several results motivated by the problem of obtaining the strong tree property and ITP at many successive cardinals simultaneously; these results focus on the successors of singular cardinals. We describe a general class of forcings that will obtain the strong tree property and ITP at the successor of a singular cardinal of any cofinality. Generalizing a result of Neeman about the tree property, we show that it is consistent for ITP to hold at <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240205102020887-0367:S0022481223000968:S0022481223000968_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\aleph _n$</span></span></img></span></span> for all <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240205102020887-0367:S0022481223000968:S0022481223000968_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$2 \\leq n &lt; \\omega $</span></span></img></span></span> simultaneously with the strong tree property at <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240205102020887-0367:S0022481223000968:S0022481223000968_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\aleph _{\\omega +1}$</span></span></img></span></span>; we also show that it is consistent for ITP to hold at <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240205102020887-0367:S0022481223000968:S0022481223000968_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\aleph _n$</span></span></img></span></span> for all <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240205102020887-0367:S0022481223000968:S0022481223000968_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$3 &lt; n &lt; \\omega $</span></span></img></span></span> and at <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240205102020887-0367:S0022481223000968:S0022481223000968_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$\\aleph _{\\omega +1}$</span></span></img></span></span> simultaneously. Finally, turning our attention to singular cardinals of uncountable cofinality, we show that it is consistent for the strong and super tree properties to hold at successors of singulars of multiple cofinalities simultaneously.</p>","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":"100 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THE STRONG AND SUPER TREE PROPERTIES AT SUCCESSORS OF SINGULAR CARDINALS\",\"authors\":\"WILLIAM ADKISSON\",\"doi\":\"10.1017/jsl.2023.96\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The strong tree property and ITP (also called the super tree property) are generalizations of the tree property that characterize strong compactness and supercompactness up to inaccessibility. That is, an inaccessible cardinal <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240205102020887-0367:S0022481223000968:S0022481223000968_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\kappa $</span></span></img></span></span> is strongly compact if and only if the strong tree property holds at <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240205102020887-0367:S0022481223000968:S0022481223000968_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\kappa $</span></span></img></span></span>, and supercompact if and only if ITP holds at <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240205102020887-0367:S0022481223000968:S0022481223000968_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\kappa $</span></span></img></span></span>. We present several results motivated by the problem of obtaining the strong tree property and ITP at many successive cardinals simultaneously; these results focus on the successors of singular cardinals. We describe a general class of forcings that will obtain the strong tree property and ITP at the successor of a singular cardinal of any cofinality. Generalizing a result of Neeman about the tree property, we show that it is consistent for ITP to hold at <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240205102020887-0367:S0022481223000968:S0022481223000968_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\aleph _n$</span></span></img></span></span> for all <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240205102020887-0367:S0022481223000968:S0022481223000968_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$2 \\\\leq n &lt; \\\\omega $</span></span></img></span></span> simultaneously with the strong tree property at <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240205102020887-0367:S0022481223000968:S0022481223000968_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\aleph _{\\\\omega +1}$</span></span></img></span></span>; we also show that it is consistent for ITP to hold at <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240205102020887-0367:S0022481223000968:S0022481223000968_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\aleph _n$</span></span></img></span></span> for all <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240205102020887-0367:S0022481223000968:S0022481223000968_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$3 &lt; n &lt; \\\\omega $</span></span></img></span></span> and at <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240205102020887-0367:S0022481223000968:S0022481223000968_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\aleph _{\\\\omega +1}$</span></span></img></span></span> simultaneously. Finally, turning our attention to singular cardinals of uncountable cofinality, we show that it is consistent for the strong and super tree properties to hold at successors of singulars of multiple cofinalities simultaneously.</p>\",\"PeriodicalId\":501300,\"journal\":{\"name\":\"The Journal of Symbolic Logic\",\"volume\":\"100 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Symbolic Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/jsl.2023.96\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Symbolic Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jsl.2023.96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

强树性质和ITP(也称作超树性质)是树性质的广义化,它们表征了直到不可访问性为止的强紧凑性和超紧凑性。也就是说,当且仅当强树性质在$\kappa $成立时,不可访问的心元$\kappa $是强紧凑的;当且仅当ITP在$\kappa $成立时,不可访问的心元$\kappa $是超紧凑的。我们提出了几个由同时在多个连续红心处获得强树属性和 ITP 问题所激发的结果;这些结果主要集中在奇异红心的后继红心上。我们描述了一类能在任意同频奇异红心的后继处获得强树性质和 ITP 的一般强制。通过推广尼曼关于树属性的一个结果,我们证明了在所有 2 \leq n < \omega $ 的 $\aleph _n$ 处,ITP 与在 $\aleph _{\omega +1}$ 处的强树属性是一致的;我们还证明了在所有 3 \lt; n < \omega $ 的 $\aleph _n$ 处,ITP 与在 $\aleph _{\omega +1}$ 处的强树属性是一致的。最后,我们把注意力转向不可数同频的奇异红心,证明强树和超树性质在多个同频奇异的后继处同时成立是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
THE STRONG AND SUPER TREE PROPERTIES AT SUCCESSORS OF SINGULAR CARDINALS

The strong tree property and ITP (also called the super tree property) are generalizations of the tree property that characterize strong compactness and supercompactness up to inaccessibility. That is, an inaccessible cardinal $\kappa $ is strongly compact if and only if the strong tree property holds at $\kappa $, and supercompact if and only if ITP holds at $\kappa $. We present several results motivated by the problem of obtaining the strong tree property and ITP at many successive cardinals simultaneously; these results focus on the successors of singular cardinals. We describe a general class of forcings that will obtain the strong tree property and ITP at the successor of a singular cardinal of any cofinality. Generalizing a result of Neeman about the tree property, we show that it is consistent for ITP to hold at $\aleph _n$ for all $2 \leq n < \omega $ simultaneously with the strong tree property at $\aleph _{\omega +1}$; we also show that it is consistent for ITP to hold at $\aleph _n$ for all $3 < n < \omega $ and at $\aleph _{\omega +1}$ simultaneously. Finally, turning our attention to singular cardinals of uncountable cofinality, we show that it is consistent for the strong and super tree properties to hold at successors of singulars of multiple cofinalities simultaneously.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信