{"title":"LEBESGUE MEASURE ZERO MODULO IDEALS ON THE NATURAL NUMBERS","authors":"VIERA GAVALOVÁ, DIEGO A. MEJÍA","doi":"10.1017/jsl.2023.97","DOIUrl":null,"url":null,"abstract":"<p>We propose a reformulation of the ideal <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240427135220755-0671:S002248122300097X:S002248122300097X_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {N}$</span></span></img></span></span> of Lebesgue measure zero sets of reals modulo an ideal <span>J</span> on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240427135220755-0671:S002248122300097X:S002248122300097X_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\omega $</span></span></img></span></span>, which we denote by <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240427135220755-0671:S002248122300097X:S002248122300097X_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {N}_J$</span></span></img></span></span>. In the same way, we reformulate the ideal <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240427135220755-0671:S002248122300097X:S002248122300097X_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {E}$</span></span></img></span></span> generated by <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240427135220755-0671:S002248122300097X:S002248122300097X_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$F_\\sigma $</span></span></img></span></span> measure zero sets of reals modulo <span>J</span>, which we denote by <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240427135220755-0671:S002248122300097X:S002248122300097X_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {N}^*_J$</span></span></img></span></span>. We show that these are <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240427135220755-0671:S002248122300097X:S002248122300097X_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\sigma $</span></span></img></span></span>-ideals and that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240427135220755-0671:S002248122300097X:S002248122300097X_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {N}_J=\\mathcal {N}$</span></span></img></span></span> iff <span>J</span> has the Baire property, which in turn is equivalent to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240427135220755-0671:S002248122300097X:S002248122300097X_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {N}^*_J=\\mathcal {E}$</span></span></img></span></span>. Moreover, we prove that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240427135220755-0671:S002248122300097X:S002248122300097X_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {N}_J$</span></span></img></span></span> does not contain co-meager sets and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240427135220755-0671:S002248122300097X:S002248122300097X_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {N}^*_J$</span></span></img></span></span> contains non-meager sets when <span>J</span> does not have the Baire property. We also prove a deep connection between these ideals modulo <span>J</span> and the notion of <span>nearly coherence of filters</span> (or ideals).</p><p>We also study the cardinal characteristics associated with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240427135220755-0671:S002248122300097X:S002248122300097X_inline12.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mathcal {N}_J$</span></span></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240427135220755-0671:S002248122300097X:S002248122300097X_inline13.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mathcal {N}^*_J$</span></span></span></span>. We show their position with respect to Cichoń’s diagram and prove consistency results in connection with other very classical cardinal characteristics of the continuum, leaving just very few open questions. To achieve this, we discovered a new characterization of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240427135220755-0671:S002248122300097X:S002248122300097X_inline14.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mathrm {add}(\\mathcal {N})$</span></span></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240427135220755-0671:S002248122300097X:S002248122300097X_inline15.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mathrm {cof}(\\mathcal {N})$</span></span></span></span>. We also show that, in Cohen model, we can obtain many different values to the cardinal characteristics associated with our new ideals.</p>","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Symbolic Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jsl.2023.97","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a reformulation of the ideal $\mathcal {N}$ of Lebesgue measure zero sets of reals modulo an ideal J on $\omega $, which we denote by $\mathcal {N}_J$. In the same way, we reformulate the ideal $\mathcal {E}$ generated by $F_\sigma $ measure zero sets of reals modulo J, which we denote by $\mathcal {N}^*_J$. We show that these are $\sigma $-ideals and that $\mathcal {N}_J=\mathcal {N}$ iff J has the Baire property, which in turn is equivalent to $\mathcal {N}^*_J=\mathcal {E}$. Moreover, we prove that $\mathcal {N}_J$ does not contain co-meager sets and $\mathcal {N}^*_J$ contains non-meager sets when J does not have the Baire property. We also prove a deep connection between these ideals modulo J and the notion of nearly coherence of filters (or ideals).
We also study the cardinal characteristics associated with $\mathcal {N}_J$ and $\mathcal {N}^*_J$. We show their position with respect to Cichoń’s diagram and prove consistency results in connection with other very classical cardinal characteristics of the continuum, leaving just very few open questions. To achieve this, we discovered a new characterization of $\mathrm {add}(\mathcal {N})$ and $\mathrm {cof}(\mathcal {N})$. We also show that, in Cohen model, we can obtain many different values to the cardinal characteristics associated with our new ideals.