LEBESGUE MEASURE ZERO MODULO IDEALS ON THE NATURAL NUMBERS

VIERA GAVALOVÁ, DIEGO A. MEJÍA
{"title":"LEBESGUE MEASURE ZERO MODULO IDEALS ON THE NATURAL NUMBERS","authors":"VIERA GAVALOVÁ, DIEGO A. MEJÍA","doi":"10.1017/jsl.2023.97","DOIUrl":null,"url":null,"abstract":"<p>We propose a reformulation of the ideal <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240427135220755-0671:S002248122300097X:S002248122300097X_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {N}$</span></span></img></span></span> of Lebesgue measure zero sets of reals modulo an ideal <span>J</span> on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240427135220755-0671:S002248122300097X:S002248122300097X_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\omega $</span></span></img></span></span>, which we denote by <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240427135220755-0671:S002248122300097X:S002248122300097X_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {N}_J$</span></span></img></span></span>. In the same way, we reformulate the ideal <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240427135220755-0671:S002248122300097X:S002248122300097X_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {E}$</span></span></img></span></span> generated by <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240427135220755-0671:S002248122300097X:S002248122300097X_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$F_\\sigma $</span></span></img></span></span> measure zero sets of reals modulo <span>J</span>, which we denote by <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240427135220755-0671:S002248122300097X:S002248122300097X_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {N}^*_J$</span></span></img></span></span>. We show that these are <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240427135220755-0671:S002248122300097X:S002248122300097X_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\sigma $</span></span></img></span></span>-ideals and that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240427135220755-0671:S002248122300097X:S002248122300097X_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {N}_J=\\mathcal {N}$</span></span></img></span></span> iff <span>J</span> has the Baire property, which in turn is equivalent to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240427135220755-0671:S002248122300097X:S002248122300097X_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {N}^*_J=\\mathcal {E}$</span></span></img></span></span>. Moreover, we prove that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240427135220755-0671:S002248122300097X:S002248122300097X_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {N}_J$</span></span></img></span></span> does not contain co-meager sets and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240427135220755-0671:S002248122300097X:S002248122300097X_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {N}^*_J$</span></span></img></span></span> contains non-meager sets when <span>J</span> does not have the Baire property. We also prove a deep connection between these ideals modulo <span>J</span> and the notion of <span>nearly coherence of filters</span> (or ideals).</p><p>We also study the cardinal characteristics associated with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240427135220755-0671:S002248122300097X:S002248122300097X_inline12.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mathcal {N}_J$</span></span></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240427135220755-0671:S002248122300097X:S002248122300097X_inline13.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mathcal {N}^*_J$</span></span></span></span>. We show their position with respect to Cichoń’s diagram and prove consistency results in connection with other very classical cardinal characteristics of the continuum, leaving just very few open questions. To achieve this, we discovered a new characterization of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240427135220755-0671:S002248122300097X:S002248122300097X_inline14.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mathrm {add}(\\mathcal {N})$</span></span></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240427135220755-0671:S002248122300097X:S002248122300097X_inline15.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mathrm {cof}(\\mathcal {N})$</span></span></span></span>. We also show that, in Cohen model, we can obtain many different values to the cardinal characteristics associated with our new ideals.</p>","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Symbolic Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jsl.2023.97","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a reformulation of the ideal Abstract Image$\mathcal {N}$ of Lebesgue measure zero sets of reals modulo an ideal J on Abstract Image$\omega $, which we denote by Abstract Image$\mathcal {N}_J$. In the same way, we reformulate the ideal Abstract Image$\mathcal {E}$ generated by Abstract Image$F_\sigma $ measure zero sets of reals modulo J, which we denote by Abstract Image$\mathcal {N}^*_J$. We show that these are Abstract Image$\sigma $-ideals and that Abstract Image$\mathcal {N}_J=\mathcal {N}$ iff J has the Baire property, which in turn is equivalent to Abstract Image$\mathcal {N}^*_J=\mathcal {E}$. Moreover, we prove that Abstract Image$\mathcal {N}_J$ does not contain co-meager sets and Abstract Image$\mathcal {N}^*_J$ contains non-meager sets when J does not have the Baire property. We also prove a deep connection between these ideals modulo J and the notion of nearly coherence of filters (or ideals).

We also study the cardinal characteristics associated with Abstract Image$\mathcal {N}_J$ and Abstract Image$\mathcal {N}^*_J$. We show their position with respect to Cichoń’s diagram and prove consistency results in connection with other very classical cardinal characteristics of the continuum, leaving just very few open questions. To achieve this, we discovered a new characterization of Abstract Image$\mathrm {add}(\mathcal {N})$ and Abstract Image$\mathrm {cof}(\mathcal {N})$. We also show that, in Cohen model, we can obtain many different values to the cardinal characteristics associated with our new ideals.

自然数上的零模理想勒贝格度量
我们提出了一种对理想 $\mathcal {N}$ 的重构,即在 $\omega $ 上以理想 J 为模量的 Lebesgue 量零实数集,我们用 $\mathcal {N}_J$ 表示它。同样,我们重新定义了由$F_\sigma $度量为零的实数集 modulo J产生的理想$\mathcal {E}$,我们用$\mathcal {N}^*_J$ 表示它。我们证明这些是 $\sigma $-ideals,并且如果 J 具有 Baire 属性,那么 $\mathcal {N}_J=\mathcal {N}$,这又等价于 $\mathcal {N}^*_J=\mathcal {E}$。此外,我们还证明当 J 不具有 Baire 属性时,$\mathcal {N}_J$ 不包含共同管理集,并且 $\mathcal {N}^*_J$ 包含非管理集。我们还证明了这些ideals modulo J与滤波器(或ideals)的近相干性概念之间的深刻联系。我们还研究了与 $\mathcal {N}_J$ 和 $\mathcal {N}^*_J$ 相关的心形特征。我们还研究了与 $mathcal {N}_J$ 和 $\mathcal {N}^*_J$ 相关的心形特征。我们展示了它们相对于 Cichoń 图的位置,并证明了与连续体的其他非常经典的心形特征相关的一致性结果,只留下了很少的未决问题。为此,我们发现了 $\mathrm {add}(\mathcal {N})$ 和 $\mathrm {cof}(\mathcal {N})$ 的新特征。我们还证明,在科恩模型中,我们可以得到与我们的新理想相关的许多不同的红心特征值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信