{"title":"积极理论的分界线","authors":"ANNA DMITRIEVA, FRANCESCO GALLINARO, MARK KAMSMA","doi":"10.1017/jsl.2023.89","DOIUrl":null,"url":null,"abstract":"<p>We generalise the properties <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240102071928484-0184:S0022481223000890:S0022481223000890_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathsf {OP}$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240102071928484-0184:S0022481223000890:S0022481223000890_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathsf {IP}$</span></span></img></span></span>, <span>k</span>-<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240102071928484-0184:S0022481223000890:S0022481223000890_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathsf {TP}$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240102071928484-0184:S0022481223000890:S0022481223000890_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathsf {TP}_{1}$</span></span></img></span></span>, <span>k</span>-<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240102071928484-0184:S0022481223000890:S0022481223000890_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathsf {TP}_{2}$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240102071928484-0184:S0022481223000890:S0022481223000890_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathsf {SOP}_{1}$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240102071928484-0184:S0022481223000890:S0022481223000890_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathsf {SOP}_{2}$</span></span></img></span></span>, and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240102071928484-0184:S0022481223000890:S0022481223000890_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathsf {SOP}_{3}$</span></span></img></span></span> to positive logic, and prove various implications and equivalences between them. We also provide a characterisation of stability in positive logic in analogy with the one in full first-order logic, both on the level of formulas and on the level of theories. For simple theories there are the classically equivalent definitions of not having <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240102071928484-0184:S0022481223000890:S0022481223000890_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathsf {TP}$</span></span></img></span></span> and dividing having local character, which we prove to be equivalent in positive logic as well. Finally, we show that a thick theory <span>T</span> has <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240102071928484-0184:S0022481223000890:S0022481223000890_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathsf {OP}$</span></span></img></span></span> iff it has <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240102071928484-0184:S0022481223000890:S0022481223000890_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathsf {IP}$</span></span></img></span></span> or <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240102071928484-0184:S0022481223000890:S0022481223000890_inline12.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathsf {SOP}_{1}$</span></span></img></span></span> and that <span>T</span> has <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240102071928484-0184:S0022481223000890:S0022481223000890_inline13.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mathsf {TP}$</span></span></span></span> iff it has <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240102071928484-0184:S0022481223000890:S0022481223000890_inline14.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mathsf {SOP}_{1}$</span></span></span></span> or <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240102071928484-0184:S0022481223000890:S0022481223000890_inline15.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mathsf {TP}_{2}$</span></span></span></span>, analogous to the well-known results in full first-order logic where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240102071928484-0184:S0022481223000890:S0022481223000890_inline16.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mathsf {SOP}_{1}$</span></span></span></span> is replaced by <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240102071928484-0184:S0022481223000890:S0022481223000890_inline17.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mathsf {SOP}$</span></span></span></span> in the former and by <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240102071928484-0184:S0022481223000890:S0022481223000890_inline18.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mathsf {TP}_{1}$</span></span></span></span> in the latter. Our proofs of these final two theorems are new and make use of Kim-independence.</p>","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DIVIDING LINES BETWEEN POSITIVE THEORIES\",\"authors\":\"ANNA DMITRIEVA, FRANCESCO GALLINARO, MARK KAMSMA\",\"doi\":\"10.1017/jsl.2023.89\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We generalise the properties <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240102071928484-0184:S0022481223000890:S0022481223000890_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathsf {OP}$</span></span></img></span></span>, <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240102071928484-0184:S0022481223000890:S0022481223000890_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathsf {IP}$</span></span></img></span></span>, <span>k</span>-<span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240102071928484-0184:S0022481223000890:S0022481223000890_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathsf {TP}$</span></span></img></span></span>, <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240102071928484-0184:S0022481223000890:S0022481223000890_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathsf {TP}_{1}$</span></span></img></span></span>, <span>k</span>-<span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240102071928484-0184:S0022481223000890:S0022481223000890_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathsf {TP}_{2}$</span></span></img></span></span>, <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240102071928484-0184:S0022481223000890:S0022481223000890_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathsf {SOP}_{1}$</span></span></img></span></span>, <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240102071928484-0184:S0022481223000890:S0022481223000890_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathsf {SOP}_{2}$</span></span></img></span></span>, and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240102071928484-0184:S0022481223000890:S0022481223000890_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathsf {SOP}_{3}$</span></span></img></span></span> to positive logic, and prove various implications and equivalences between them. We also provide a characterisation of stability in positive logic in analogy with the one in full first-order logic, both on the level of formulas and on the level of theories. For simple theories there are the classically equivalent definitions of not having <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240102071928484-0184:S0022481223000890:S0022481223000890_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathsf {TP}$</span></span></img></span></span> and dividing having local character, which we prove to be equivalent in positive logic as well. Finally, we show that a thick theory <span>T</span> has <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240102071928484-0184:S0022481223000890:S0022481223000890_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathsf {OP}$</span></span></img></span></span> iff it has <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240102071928484-0184:S0022481223000890:S0022481223000890_inline11.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathsf {IP}$</span></span></img></span></span> or <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240102071928484-0184:S0022481223000890:S0022481223000890_inline12.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathsf {SOP}_{1}$</span></span></img></span></span> and that <span>T</span> has <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240102071928484-0184:S0022481223000890:S0022481223000890_inline13.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathsf {TP}$</span></span></span></span> iff it has <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240102071928484-0184:S0022481223000890:S0022481223000890_inline14.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathsf {SOP}_{1}$</span></span></span></span> or <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240102071928484-0184:S0022481223000890:S0022481223000890_inline15.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathsf {TP}_{2}$</span></span></span></span>, analogous to the well-known results in full first-order logic where <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240102071928484-0184:S0022481223000890:S0022481223000890_inline16.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathsf {SOP}_{1}$</span></span></span></span> is replaced by <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240102071928484-0184:S0022481223000890:S0022481223000890_inline17.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathsf {SOP}$</span></span></span></span> in the former and by <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240102071928484-0184:S0022481223000890:S0022481223000890_inline18.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathsf {TP}_{1}$</span></span></span></span> in the latter. Our proofs of these final two theorems are new and make use of Kim-independence.</p>\",\"PeriodicalId\":501300,\"journal\":{\"name\":\"The Journal of Symbolic Logic\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Symbolic Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/jsl.2023.89\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Symbolic Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jsl.2023.89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We generalise the properties $\mathsf {OP}$, $\mathsf {IP}$, k-$\mathsf {TP}$, $\mathsf {TP}_{1}$, k-$\mathsf {TP}_{2}$, $\mathsf {SOP}_{1}$, $\mathsf {SOP}_{2}$, and $\mathsf {SOP}_{3}$ to positive logic, and prove various implications and equivalences between them. We also provide a characterisation of stability in positive logic in analogy with the one in full first-order logic, both on the level of formulas and on the level of theories. For simple theories there are the classically equivalent definitions of not having $\mathsf {TP}$ and dividing having local character, which we prove to be equivalent in positive logic as well. Finally, we show that a thick theory T has $\mathsf {OP}$ iff it has $\mathsf {IP}$ or $\mathsf {SOP}_{1}$ and that T has $\mathsf {TP}$ iff it has $\mathsf {SOP}_{1}$ or $\mathsf {TP}_{2}$, analogous to the well-known results in full first-order logic where $\mathsf {SOP}_{1}$ is replaced by $\mathsf {SOP}$ in the former and by $\mathsf {TP}_{1}$ in the latter. Our proofs of these final two theorems are new and make use of Kim-independence.