FORBIDDEN INDUCED SUBGRAPHS AND THE ŁOŚ–TARSKI THEOREM

YIJIA CHEN, JÖRG FLUM
{"title":"FORBIDDEN INDUCED SUBGRAPHS AND THE ŁOŚ–TARSKI THEOREM","authors":"YIJIA CHEN, JÖRG FLUM","doi":"10.1017/jsl.2023.99","DOIUrl":null,"url":null,"abstract":"<p>Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226160248729-0542:S0022481223000993:S0022481223000993_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathscr {C}$</span></span></img></span></span> be a class of finite and infinite graphs that is closed under induced subgraphs. The well-known Łoś–Tarski Theorem from classical model theory implies that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226160248729-0542:S0022481223000993:S0022481223000993_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathscr {C}$</span></span></img></span></span> is definable in first-order logic by a sentence <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226160248729-0542:S0022481223000993:S0022481223000993_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\varphi $</span></span></img></span></span> if and only if <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226160248729-0542:S0022481223000993:S0022481223000993_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathscr {C}$</span></span></img></span></span> has a finite set of forbidden induced finite subgraphs. This result provides a powerful tool to show nontrivial characterizations of graphs of small vertex cover, of bounded tree-depth, of bounded shrub-depth, etc. in terms of forbidden induced finite subgraphs. Furthermore, by the Completeness Theorem, we can compute from <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226160248729-0542:S0022481223000993:S0022481223000993_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\varphi $</span></span></img></span></span> the corresponding forbidden induced subgraphs. This machinery fails on finite graphs as shown by our results: </p><ul><li><p><span>–</span> There is a class <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226160248729-0542:S0022481223000993:S0022481223000993_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathscr {C}$</span></span></img></span></span> of finite graphs that is definable in first-order logic and closed under induced subgraphs but has no finite set of forbidden induced subgraphs.</p></li><li><p><span>–</span> Even if we only consider classes <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226160248729-0542:S0022481223000993:S0022481223000993_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathscr {C}$</span></span></img></span></span> of finite graphs that can be characterized by a finite set of forbidden induced subgraphs, such a characterization cannot be computed from a first-order sentence <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226160248729-0542:S0022481223000993:S0022481223000993_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$\\varphi $</span></span></img></span></span> that defines <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226160248729-0542:S0022481223000993:S0022481223000993_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathscr {C}$</span></span></img></span></span> and the size of the characterization cannot be bounded by <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226160248729-0542:S0022481223000993:S0022481223000993_inline10.png\"/><span data-mathjax-type=\"texmath\"><span>$f(|\\varphi |)$</span></span></span></span> for any computable function <span>f</span>.</p></li></ul><p></p><p>Besides their importance in graph theory, the above results also significantly strengthen similar known theorems for arbitrary structures.</p>","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":"79 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Symbolic Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jsl.2023.99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let Abstract Image$\mathscr {C}$ be a class of finite and infinite graphs that is closed under induced subgraphs. The well-known Łoś–Tarski Theorem from classical model theory implies that Abstract Image$\mathscr {C}$ is definable in first-order logic by a sentence Abstract Image$\varphi $ if and only if Abstract Image$\mathscr {C}$ has a finite set of forbidden induced finite subgraphs. This result provides a powerful tool to show nontrivial characterizations of graphs of small vertex cover, of bounded tree-depth, of bounded shrub-depth, etc. in terms of forbidden induced finite subgraphs. Furthermore, by the Completeness Theorem, we can compute from Abstract Image$\varphi $ the corresponding forbidden induced subgraphs. This machinery fails on finite graphs as shown by our results:

  • There is a class Abstract Image$\mathscr {C}$ of finite graphs that is definable in first-order logic and closed under induced subgraphs but has no finite set of forbidden induced subgraphs.

  • Even if we only consider classes Abstract Image$\mathscr {C}$ of finite graphs that can be characterized by a finite set of forbidden induced subgraphs, such a characterization cannot be computed from a first-order sentence Abstract Image$\varphi $ that defines Abstract Image$\mathscr {C}$ and the size of the characterization cannot be bounded by Abstract Image$f(|\varphi |)$ for any computable function f.

Besides their importance in graph theory, the above results also significantly strengthen similar known theorems for arbitrary structures.

禁止诱导子图与łoś-tarski定理
让 $mathscr {C}$ 是一类在诱导子图下封闭的有限图和无限图。经典模型理论中著名的 Łoś-Tarski 定理意味着,当且仅当 $mathscr {C}$ 有一个有限的禁止诱导有限子图集时,$mathscr {C}$ 在一阶逻辑中是可以用一个句子 $varphi $ 来定义的。这一结果提供了一个强大的工具,可以用禁止诱导有限子图来说明小顶点覆盖图、有界树深度图、有界灌木深度图等图的非微观特征。此外,根据完备性定理,我们可以从 $\varphi $ 计算出相应的禁止诱导子图。正如我们的结果所示,这一机制在有限图上是失效的:- 有一类$\mathscr {C}$ 有限图在一阶逻辑中是可定义的,在诱导子图下是封闭的,但没有有限的禁止诱导子图集。- 即使我们只考虑有限图类$\mathscr {C}$,这些有限图可以用有限的禁止诱导子图集来表征,这样的表征也不能从定义$\mathscr {C}$的一阶句子$\varphi$中计算出来,而且对于任何可计算函数f,表征的大小也不能被$f(|\varphi |)$所限定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信