{"title":"COFINAL TYPES BELOW","authors":"ROY SHALEV","doi":"10.1017/jsl.2023.32","DOIUrl":null,"url":null,"abstract":"It is proved that for every positive integer <jats:italic>n</jats:italic>, the number of non-Tukey-equivalent directed sets of cardinality <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481223000324_inline2.png\" /> <jats:tex-math> $\\leq \\aleph _n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is at least <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481223000324_inline3.png\" /> <jats:tex-math> $c_{n+2}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481223000324_inline4.png\" /> <jats:tex-math> $(n+2)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-Catalan number. Moreover, the class <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481223000324_inline5.png\" /> <jats:tex-math> $\\mathcal D_{\\aleph _n}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of directed sets of cardinality <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481223000324_inline6.png\" /> <jats:tex-math> $\\leq \\aleph _n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> contains an isomorphic copy of the poset of Dyck <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481223000324_inline7.png\" /> <jats:tex-math> $(n+2)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-paths. Furthermore, we give a complete description whether two successive elements in the copy contain another directed set in between or not.","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Symbolic Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jsl.2023.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
It is proved that for every positive integer n, the number of non-Tukey-equivalent directed sets of cardinality $\leq \aleph _n$ is at least $c_{n+2}$ , the $(n+2)$ -Catalan number. Moreover, the class $\mathcal D_{\aleph _n}$ of directed sets of cardinality $\leq \aleph _n$ contains an isomorphic copy of the poset of Dyck $(n+2)$ -paths. Furthermore, we give a complete description whether two successive elements in the copy contain another directed set in between or not.