COFINAL TYPES BELOW

ROY SHALEV
{"title":"COFINAL TYPES BELOW","authors":"ROY SHALEV","doi":"10.1017/jsl.2023.32","DOIUrl":null,"url":null,"abstract":"It is proved that for every positive integer <jats:italic>n</jats:italic>, the number of non-Tukey-equivalent directed sets of cardinality <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481223000324_inline2.png\" /> <jats:tex-math> $\\leq \\aleph _n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is at least <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481223000324_inline3.png\" /> <jats:tex-math> $c_{n+2}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481223000324_inline4.png\" /> <jats:tex-math> $(n+2)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-Catalan number. Moreover, the class <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481223000324_inline5.png\" /> <jats:tex-math> $\\mathcal D_{\\aleph _n}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of directed sets of cardinality <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481223000324_inline6.png\" /> <jats:tex-math> $\\leq \\aleph _n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> contains an isomorphic copy of the poset of Dyck <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481223000324_inline7.png\" /> <jats:tex-math> $(n+2)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-paths. Furthermore, we give a complete description whether two successive elements in the copy contain another directed set in between or not.","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Symbolic Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jsl.2023.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

It is proved that for every positive integer n, the number of non-Tukey-equivalent directed sets of cardinality $\leq \aleph _n$ is at least $c_{n+2}$ , the $(n+2)$ -Catalan number. Moreover, the class $\mathcal D_{\aleph _n}$ of directed sets of cardinality $\leq \aleph _n$ contains an isomorphic copy of the poset of Dyck $(n+2)$ -paths. Furthermore, we give a complete description whether two successive elements in the copy contain another directed set in between or not.
Cofinal类型如下
证明了对于每一个正整数n,基数$\leq \aleph _n$的非tukey等价有向集的个数至少为$c_{n+2}$,即$(n+2)$ -加泰罗尼亚数。此外,基数$\leq \aleph _n$的有向集的$\mathcal D_{\aleph _n}$类包含Dyck $(n+2)$ -paths的偏置集的同构副本。此外,我们给出了副本中两个连续元素之间是否包含另一个有向集的完整描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信