{"title":"Asymptotics of solutions of special second-order linear recurrencies with polynomial coefficients and boundary effects of polynomial filters","authors":"Alexey A. Kytmanov , Sergey P. Tsarev","doi":"10.1016/j.jsc.2024.102386","DOIUrl":"10.1016/j.jsc.2024.102386","url":null,"abstract":"<div><div>In this paper we prove that classical discrete orthogonal polynomials (Hahn polynomials on an equidistant grid with unit weights) of high degrees have extremely small values near the endpoints (we call this property “rapid decay near the endpoints”) but extremely large values between these grid points and their roots are very close to the grid points near the endpoints. These results imply important general boundary effects for stable linear polynomial filters (we call this property “rapid boundary attenuation”).</div><div>Our results give interesting examples of nontrivial asymptotics of practically important solutions of special second-order linear recurrencies with polynomial coefficients studied by M.Petkovšek; to his memory we dedicate this paper.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142422635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yosef Berman , Joshua Forrest , Matthew Grote , Alexey Ovchinnikov , Sonia L. Rueda
{"title":"Symbolic-numeric algorithm for parameter estimation in discrete-time models with exp","authors":"Yosef Berman , Joshua Forrest , Matthew Grote , Alexey Ovchinnikov , Sonia L. Rueda","doi":"10.1016/j.jsc.2024.102387","DOIUrl":"10.1016/j.jsc.2024.102387","url":null,"abstract":"<div><div>Dynamic models describe phenomena across scientific disciplines, yet to make these models useful in application the unknown parameter values of the models must be determined. Discrete-time dynamic models are widely used to model biological processes, but it is often difficult to determine these parameters. In this paper, we propose a symbolic-numeric approach for parameter estimation in discrete-time models that involve univariate non-algebraic (locally) analytic functions such as exp. We illustrate the performance (precision) of our approach by applying our approach to two archetypal discrete-time models in biology (the flour beetle ‘LPA’ model and discrete Lotka-Volterra competition model). Unlike optimization-based methods, our algorithm guarantees to find all solutions of the parameter values up to a specified precision given time-series data for the measured variables provided that there are finitely many parameter values that fit the data and that the used polynomial system solver can find all roots of the associated polynomial system with interval coefficients.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142422637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sebastian Falkensteiner , Alexey Ovchinnikov , J. Rafael Sendra
{"title":"Algorithm for globally identifiable reparametrizations of ODEs","authors":"Sebastian Falkensteiner , Alexey Ovchinnikov , J. Rafael Sendra","doi":"10.1016/j.jsc.2024.102385","DOIUrl":"10.1016/j.jsc.2024.102385","url":null,"abstract":"<div><div>Structural global parameter identifiability indicates whether one can determine a parameter's value in an ODE model from given inputs and outputs. If a given model has parameters for which there is exactly one value, such parameters are called globally identifiable. Given an ODE model involving not globally identifiable parameters, first we transform the system into one with locally identifiable parameters. As a main contribution of this paper, then we present a procedure for replacing, if possible, the ODE model with an equivalent one that has globally identifiable parameters. We first derive this as an algorithm for one-dimensional ODE models and then reuse this approach for higher-dimensional models.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142311594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Subresultants of several univariate polynomials in Newton basis","authors":"Weidong Wang, Jing Yang","doi":"10.1016/j.jsc.2024.102378","DOIUrl":"10.1016/j.jsc.2024.102378","url":null,"abstract":"<div><p>In this paper, we consider the problem of formulating the subresultant polynomials for several univariate polynomials in Newton basis. It is required that the resulting subresultant polynomials be expressed in the same Newton basis as that used in the input polynomials. To solve the problem, we devise a particular matrix with the help of the companion matrix of a polynomial in Newton basis. Meanwhile, the concept of determinant polynomial in power basis for formulating subresultant polynomials is extended to that in Newton basis. It is proved that the generalized determinant polynomial of the specially designed matrix provides a new formula for the subresultant polynomial in Newton basis, which is equivalent to the subresultant polynomial in power basis. Furthermore, we show an application of the new formula in devising a basis-preserving method for computing the gcd of several Newton polynomials.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142173393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rida Ait El Manssour , Anna-Laura Sattelberger , Bertrand Teguia Tabuguia
{"title":"D-algebraic functions","authors":"Rida Ait El Manssour , Anna-Laura Sattelberger , Bertrand Teguia Tabuguia","doi":"10.1016/j.jsc.2024.102377","DOIUrl":"10.1016/j.jsc.2024.102377","url":null,"abstract":"<div><p>Differentially-algebraic (D-algebraic) functions are solutions of polynomial equations in the function, its derivatives, and the independent variables. We revisit closure properties of these functions by providing constructive proofs. We present algorithms to compute algebraic differential equations for compositions and arithmetic manipulations of univariate D-algebraic functions and derive bounds for the order of the resulting differential equations. We apply our methods to examples in the sciences.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142150874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jelle Piepenbrock , Josef Urban , Konstantin Korovin , Miroslav Olšák , Tom Heskes , Mikoláš Janota
{"title":"Invariant neural architecture for learning term synthesis in instantiation proving","authors":"Jelle Piepenbrock , Josef Urban , Konstantin Korovin , Miroslav Olšák , Tom Heskes , Mikoláš Janota","doi":"10.1016/j.jsc.2024.102375","DOIUrl":"10.1016/j.jsc.2024.102375","url":null,"abstract":"<div><p>The development of strong CDCL-based propositional (SAT) solvers has greatly advanced several areas of automated reasoning (AR). One of the directions in AR is therefore to make use of SAT solvers in expressive formalisms such as first-order logic, for which large corpora of general mathematical problems exist today. This is possible due to Herbrand's theorem, which allows reduction of first-order problems to propositional problems by instantiation. The core challenge is synthesizing the appropriate instances from the typically infinite Herbrand universe.</p><p>In this work, we develop a machine learning system targeting this task, addressing its combinatorial and invariance properties. In particular, we develop a GNN2RNN architecture based on a graph neural network (GNN) that learns from problems and their solutions independently of many symmetries and symbol names (addressing the abundance of Skolems), combined with a recurrent neural network (RNN) that proposes for each clause its instantiations. The architecture is then combined with an efficient ground solver and, starting with zero knowledge, iteratively trained on a large corpus of mathematical problems. We show that the system is capable of solving many problems by such educated guessing, finding proofs for 32.12% of the training set. The final trained system solves 19.74% of the unseen test data on its own. We also observe that the trained system finds solutions that the iProver and CVC5 systems did not find.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0747717124000798/pdfft?md5=03f2c9a993930436ebd44dced50d3406&pid=1-s2.0-S0747717124000798-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142150873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Graph sequence learning for premise selection","authors":"Edvard K. Holden, Konstantin Korovin","doi":"10.1016/j.jsc.2024.102376","DOIUrl":"10.1016/j.jsc.2024.102376","url":null,"abstract":"<div><p>Premise selection is crucial for large theory reasoning with automated theorem provers as the sheer size of the problems quickly leads to resource exhaustion. This paper proposes a premise selection method inspired by the machine learning domain of image captioning, where language models automatically generate a suitable caption for a given image. Likewise, we attempt to generate the sequence of axioms required to construct the proof of a given conjecture. In our <em>axiom captioning</em> approach, a pre-trained graph neural network is combined with a language model via transfer learning to encapsulate both the inter-axiom and conjecture-axiom relationships. We evaluate different configurations of our method and experience a 14% improvement in the number of solved problems over a baseline.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0747717124000804/pdfft?md5=f758e854b5cedd39b04e5e1431d3d6d8&pid=1-s2.0-S0747717124000804-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142162490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Symmetric SAGE and SONC forms, exactness and quantitative gaps","authors":"Philippe Moustrou , Cordian Riener , Thorsten Theobald , Hugues Verdure","doi":"10.1016/j.jsc.2024.102374","DOIUrl":"10.1016/j.jsc.2024.102374","url":null,"abstract":"<div><p>The classes of sums of arithmetic-geometric exponentials (SAGE) and of sums of nonnegative circuit polynomials (SONC) provide nonnegativity certificates which are based on the inequality of the arithmetic and geometric means. We study the cones of symmetric SAGE and SONC forms and their relations to the underlying symmetric nonnegative cone.</p><p>As main results, we provide several symmetric cases where the SAGE or SONC property coincides with nonnegativity and we present quantitative results on the differences in various situations. The results rely on characterizations of the zeroes and the minimizers for symmetric SAGE and SONC forms, which we develop. Finally, we also study symmetric monomial mean inequalities and apply SONC certificates to establish a generalized version of Muirhead's inequality.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0747717124000786/pdfft?md5=ff647fd07ebbb483b3bff891ef5b3479&pid=1-s2.0-S0747717124000786-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142039673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A short proof for the parameter continuation theorem","authors":"Viktoriia Borovik, Paul Breiding","doi":"10.1016/j.jsc.2024.102373","DOIUrl":"10.1016/j.jsc.2024.102373","url":null,"abstract":"<div><p>The Parameter Continuation Theorem is the theoretical foundation for polynomial homotopy continuation, which is one of the main tools in computational algebraic geometry. In this note, we give a short proof using Gröbner bases. Our approach gives a method for computing discriminants.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0747717124000774/pdfft?md5=f847eab8eb976e0f1998987fb2d287a9&pid=1-s2.0-S0747717124000774-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141947539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fast evaluation and root finding for polynomials with floating-point coefficients","authors":"Rémi Imbach , Guillaume Moroz","doi":"10.1016/j.jsc.2024.102372","DOIUrl":"10.1016/j.jsc.2024.102372","url":null,"abstract":"<div><p>Evaluating or finding the roots of a polynomial <span><math><mi>f</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>d</mi></mrow></msub><msup><mrow><mi>z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> with floating-point number coefficients is a ubiquitous problem. By using a piecewise approximation of <em>f</em> obtained with a careful use of the Newton polygon of <em>f</em>, we improve state-of-the-art upper bounds on the number of operations to evaluate and find the roots of a polynomial. In particular, if the coefficients of <em>f</em> are given with <em>m</em> significant bits, we provide for the first time an algorithm that finds all the roots of <em>f</em> with a relative condition number lower than <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup></math></span>, using a number of bit operations quasi-linear in the bit-size of the floating-point representation of <em>f</em>. Notably, our new approach handles efficiently polynomials with coefficients ranging from <span><math><msup><mrow><mn>2</mn></mrow><mrow><mo>−</mo><mi>d</mi></mrow></msup></math></span> to <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>d</mi></mrow></msup></math></span>, both in theory and in practice.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141947541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}