{"title":"张量的分解轨迹","authors":"Alessandra Bernardi , Alessandro Oneto , Pierpaola Santarsiero","doi":"10.1016/j.jsc.2025.102451","DOIUrl":null,"url":null,"abstract":"<div><div>The decomposition locus of a tensor is the set of rank-one tensors appearing in a minimal tensor-rank decomposition of the tensor. For tensors lying on the tangential variety of any Segre variety, but not on the variety itself, we show that the decomposition locus consists of all rank-one tensors except the tangency point only. We also explicitly compute decomposition loci of all tensors belonging to tensor spaces with finitely many orbits with respect to the action of product of general linear groups.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"131 ","pages":"Article 102451"},"PeriodicalIF":0.6000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decomposition loci of tensors\",\"authors\":\"Alessandra Bernardi , Alessandro Oneto , Pierpaola Santarsiero\",\"doi\":\"10.1016/j.jsc.2025.102451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The decomposition locus of a tensor is the set of rank-one tensors appearing in a minimal tensor-rank decomposition of the tensor. For tensors lying on the tangential variety of any Segre variety, but not on the variety itself, we show that the decomposition locus consists of all rank-one tensors except the tangency point only. We also explicitly compute decomposition loci of all tensors belonging to tensor spaces with finitely many orbits with respect to the action of product of general linear groups.</div></div>\",\"PeriodicalId\":50031,\"journal\":{\"name\":\"Journal of Symbolic Computation\",\"volume\":\"131 \",\"pages\":\"Article 102451\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symbolic Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747717125000331\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717125000331","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
The decomposition locus of a tensor is the set of rank-one tensors appearing in a minimal tensor-rank decomposition of the tensor. For tensors lying on the tangential variety of any Segre variety, but not on the variety itself, we show that the decomposition locus consists of all rank-one tensors except the tangency point only. We also explicitly compute decomposition loci of all tensors belonging to tensor spaces with finitely many orbits with respect to the action of product of general linear groups.
期刊介绍:
An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects.
It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.