Journal of Symbolic Computation最新文献

筛选
英文 中文
Elimination by substitution
IF 0.6 4区 数学
Journal of Symbolic Computation Pub Date : 2025-04-02 DOI: 10.1016/j.jsc.2025.102445
Martin Kreuzer , Lorenzo Robbiano
{"title":"Elimination by substitution","authors":"Martin Kreuzer ,&nbsp;Lorenzo Robbiano","doi":"10.1016/j.jsc.2025.102445","DOIUrl":"10.1016/j.jsc.2025.102445","url":null,"abstract":"<div><div>Let <em>K</em> be a field and <span><math><mi>P</mi><mo>=</mo><mi>K</mi><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></math></span>. The technique of elimination by substitution is based on discovering a coherently <span><math><mi>Z</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>)</mo></math></span>-separating tuple of polynomials <span><math><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>)</mo></math></span> in an ideal <em>I</em>, i.e., on finding polynomials such that <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>−</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> with <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mi>K</mi><mo>[</mo><mi>X</mi><mo>∖</mo><mi>Z</mi><mo>]</mo></math></span>. Here we elaborate on this technique in the case when <em>P</em> is non-negatively graded. The existence of a coherently <em>Z</em>-separating tuple is reduced to solving several <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-module membership problems. Best separable re-embeddings, i.e., isomorphisms <span><math><mi>P</mi><mo>/</mo><mi>I</mi><mo>⟶</mo><mi>K</mi><mo>[</mo><mi>X</mi><mo>∖</mo><mi>Z</mi><mo>]</mo><mo>/</mo><mo>(</mo><mi>I</mi><mo>∩</mo><mi>K</mi><mo>[</mo><mi>X</mi><mo>∖</mo><mi>Z</mi><mo>]</mo><mo>)</mo></math></span> with maximal #<em>Z</em>, are found degree-by-degree. They turn out to yield optimal re-embeddings in the positively graded case. Viewing <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>⟶</mo><mi>P</mi><mo>/</mo><mi>I</mi></math></span> as a fibration over an affine space, we show that its fibers allow optimal <em>Z</em>-separating re-embeddings, and we provide a criterion for a fiber to be isomorphic to an affine space. In the last section we introduce a new technique based on the solution of a unimodular matrix problem which enables us to construct automorphisms of <em>P</em> such that additional <em>Z</em>-separating re-embeddings are possible. One of the main outcomes is an algorithm which allows us to explicitly compute a homogeneous isomorphism between <span><math><mi>P</mi><mo>/</mo><mi>I</mi></math></span> and a non-negatively graded polynomial ring if <span><math><mi>P</mi><mo>/</mo><mi>I</mi></math></span> is regular.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"131 ","pages":"Article 102445"},"PeriodicalIF":0.6,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143768989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proof of some conjectural congruences involving products of two binomial coefficients
IF 0.6 4区 数学
Journal of Symbolic Computation Pub Date : 2025-02-27 DOI: 10.1016/j.jsc.2025.102436
Guo-Shuai Mao , Xiran Zhang
{"title":"Proof of some conjectural congruences involving products of two binomial coefficients","authors":"Guo-Shuai Mao ,&nbsp;Xiran Zhang","doi":"10.1016/j.jsc.2025.102436","DOIUrl":"10.1016/j.jsc.2025.102436","url":null,"abstract":"<div><div>In this paper, we mainly prove the following conjectures of Z.-W. Sun: Let <span><math><mi>p</mi><mo>≡</mo><mn>3</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span> be a prime. Then<span><span><span><math><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></munderover><mfrac><mrow><msup><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mn>2</mn><mi>k</mi></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mo>(</mo><mn>2</mn><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo><msup><mrow><mn>8</mn></mrow><mrow><mi>k</mi></mrow></msup></mrow></mfrac><mo>≡</mo><mo>−</mo><mrow><mo>(</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>p</mi></mrow></mfrac><mo>)</mo></mrow><mfrac><mrow><mi>p</mi><mo>+</mo><mn>1</mn></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>+</mo><mn>1</mn></mrow></mfrac><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>(</mo><mi>p</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></mrow></mtd></mtr><mtr><mtd><mrow><mo>(</mo><mi>p</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>4</mn></mrow></mtd></mtr></mtable><mo>)</mo></mrow><mspace></mspace><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>,</mo><mn>3</mn><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></munderover><mfrac><mrow><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mn>2</mn><mi>k</mi></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mn>2</mn><mi>k</mi></mrow></mtd></mtr><mtr><mtd><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mtd></mtr></mtable><mo>)</mo></mrow></mrow><mrow><mo>(</mo><mn>2</mn><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo><msup><mrow><mn>8</mn></mrow><mrow><mi>k</mi></mrow></msup></mrow></mfrac><mo>≡</mo><mi>p</mi><mo>+</mo><mrow><mo>(</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>p</mi></mrow></mfrac><mo>)</mo></mrow><mfrac><mrow><mn>2</mn><mi>p</mi></mrow><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>(</mo><mi>p</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></mrow></mtd></mtr><mtr><mtd><mrow><mo>(</mo><mi>p</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>4</mn></mrow></mtd></mtr></mtable><mo>)</mo></mrow></mfrac><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><mo>(</mo><mfrac><mrow><mo>⋅</mo></mrow><mrow><mi>p</mi></mrow></mfrac><mo>)</mo></math></span> stands for the Legendre symbol. The necessary proofs are provided by the computer algebra software Sigma to find and verify the underlying hypergeometric sum identities.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"130 ","pages":"Article 102436"},"PeriodicalIF":0.6,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143529701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Certified simultaneous isotopic approximation of algebraic curves via subdivision
IF 0.6 4区 数学
Journal of Symbolic Computation Pub Date : 2025-02-26 DOI: 10.1016/j.jsc.2025.102435
Michael Burr, Michael Byrd
{"title":"Certified simultaneous isotopic approximation of algebraic curves via subdivision","authors":"Michael Burr,&nbsp;Michael Byrd","doi":"10.1016/j.jsc.2025.102435","DOIUrl":"10.1016/j.jsc.2025.102435","url":null,"abstract":"<div><div>We present a certified algorithm based on subdivision for computing an isotopic approximation to any number of algebraic curves in the plane. Our algorithm is based on the certified curve approximation algorithm of Plantinga and Vegter. The main challenge in this algorithm is to correctly and efficiently identify and isolate all intersections between the curves. To overcome this challenge, we introduce a new and simple test that guarantees the global correctness of our output. A main step in our algorithm for approximating any number of curves is to correctly approximate a pair of curves. In addition to developing the details of this special case, we provide complexity analyses for both the number of steps and the bit-complexity of this algorithm using both worst-case bounds as well as those based on continuous amortization and condition numbers.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"131 ","pages":"Article 102435"},"PeriodicalIF":0.6,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143685764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A propositional encoding for first-order clausal entailment over infinitely many constants
IF 0.6 4区 数学
Journal of Symbolic Computation Pub Date : 2025-02-19 DOI: 10.1016/j.jsc.2025.102434
Vaishak Belle
{"title":"A propositional encoding for first-order clausal entailment over infinitely many constants","authors":"Vaishak Belle","doi":"10.1016/j.jsc.2025.102434","DOIUrl":"10.1016/j.jsc.2025.102434","url":null,"abstract":"<div><div>There is a fundamental trade-off between the expressiveness of the language and the tractability of the reasoning task in knowledge representation. On the one hand it is widely acknowledged that relations and more generally, the expressiveness of first-order logic is extremely useful for capturing concepts required for common-sense reasoning. But at the same time the entailment problem is only semi-decidable.</div><div>There have been a wide range of approaches to deal with this trade-off, from restricting the language to propositional logic to limit the expressiveness of the language in terms of the arity of the predicates (as in description logics) or the use of negation (as in Horn logic) to limit reasoning by weakening the entailment relation using non-standard semantics.</div><div>In this work, we address a gap in this literature. We show that there is an intuitive fragment of first-order disjunctive knowledge, for which reasoning is decidable and can be reduced to propositional satisfiability. Knowledge bases in this fragment correspond to universally quantified first-order clauses, but without arity restrictions and without restrictions on the appearance of negation. Queries, however, are expected to be ground formulas. We achieve this result by showing how the entailment over infinitely many infinite-sized structures can be reduced to a search over finitely many finite-size structures. The crux of the argument lies in showing that constants not mentioned in the knowledge base and/or query behave identically (in a suitable formal sense). We then go on to also show that there is also an extension to this result for function symbols.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"130 ","pages":"Article 102434"},"PeriodicalIF":0.6,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143474775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reduction systems and degree bounds for integration
IF 0.6 4区 数学
Journal of Symbolic Computation Pub Date : 2025-02-19 DOI: 10.1016/j.jsc.2025.102432
Hao Du , Clemens G. Raab
{"title":"Reduction systems and degree bounds for integration","authors":"Hao Du ,&nbsp;Clemens G. Raab","doi":"10.1016/j.jsc.2025.102432","DOIUrl":"10.1016/j.jsc.2025.102432","url":null,"abstract":"<div><div>In symbolic integration, the Risch–Norman algorithm aims to find closed forms of elementary integrals over differential fields by an ansatz for the integral, which usually is based on heuristic degree bounds. Norman presented an approach that avoids degree bounds and only relies on the completion of reduction systems. We give a formalization of his approach and we develop a refined completion process, which terminates in more instances. In some situations when the completion process does not terminate, one can detect patterns allowing to still describe infinite reduction systems that are complete. We present such infinite systems for the fields generated by Airy functions and complete elliptic integrals, respectively. Moreover, we show how complete reduction systems can be used to find rigorous degree bounds. In particular, we give a general formula for weighted degree bounds and we apply it to find tight bounds in the above examples.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"130 ","pages":"Article 102432"},"PeriodicalIF":0.6,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143509115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Congruence properties for Schmidt type d-fold partition diamonds
IF 0.6 4区 数学
Journal of Symbolic Computation Pub Date : 2025-02-19 DOI: 10.1016/j.jsc.2025.102431
Olivia X.M. Yao, Xuan Yu
{"title":"Congruence properties for Schmidt type d-fold partition diamonds","authors":"Olivia X.M. Yao,&nbsp;Xuan Yu","doi":"10.1016/j.jsc.2025.102431","DOIUrl":"10.1016/j.jsc.2025.102431","url":null,"abstract":"<div><div>Recently, Dockery, Jameson, Sellers and Wilson introduced new combinatorial objects called <em>d</em>-fold partition diamonds, which generalize both the classical partition function and the plane partition diamonds of Andrews, Paule and Riese. They also investigated a partition function <span><math><msub><mrow><mi>s</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> which counts the number of Schmidt type <em>d</em>-fold partition diamonds of <em>n</em>. They presented the generating functions of <span><math><msub><mrow><mi>s</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> and proved several congruences for <span><math><msub><mrow><mi>s</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span>. At the end of their paper, they posed a conjecture on congruences modulo 7 for <span><math><msub><mrow><mi>s</mi></mrow><mrow><mn>6</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>s</mi></mrow><mrow><mn>6</mn><mi>k</mi><mo>+</mo><mn>2</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span>. In this paper, we prove the conjectural congruences for <span><math><msub><mrow><mi>s</mi></mrow><mrow><mn>6</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> by using two methods: an elementary proof based on a result of Garvan and an algorithmic proof based on the Mathematica package RaduRK by Smoot. We also give an algorithmic proof of the conjectural congruences for <span><math><msub><mrow><mi>s</mi></mrow><mrow><mn>6</mn><mi>k</mi><mo>+</mo><mn>2</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> by utilizing Smoot's Mathematica package RaduRK. In addition, we prove new infinite families of congruences modulo 7 for <span><math><msub><mrow><mi>s</mi></mrow><mrow><mn>6</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> and prove that <span><math><mfrac><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>6</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>(</mo><mn>7</mn><mi>n</mi><mo>+</mo><mn>3</mn><mo>)</mo></mrow><mrow><mn>7</mn></mrow></mfrac></math></span> takes integer values with probability 1 for <span><math><mi>n</mi><mo>≥</mo><mn>0</mn></math></span>. Moreover, we show that there exist infinitely many integers <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> such that <span><math><msub><mrow><mi>s</mi></mrow><mrow><mn>12</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>(</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><mo>≡</mo><mspace></mspace><mi>i</mi><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>13</mn><mo>)</mo></math></span> with <span><math><mn>0</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mn>12</mn></math></span>.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"130 ","pages":"Article 102431"},"PeriodicalIF":0.6,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143509114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On other two representations of the C-recursive integer sequences by terms in modular arithmetic
IF 0.6 4区 数学
Journal of Symbolic Computation Pub Date : 2025-02-19 DOI: 10.1016/j.jsc.2025.102433
Mihai Prunescu
{"title":"On other two representations of the C-recursive integer sequences by terms in modular arithmetic","authors":"Mihai Prunescu","doi":"10.1016/j.jsc.2025.102433","DOIUrl":"10.1016/j.jsc.2025.102433","url":null,"abstract":"&lt;div&gt;&lt;div&gt;If &lt;span&gt;&lt;math&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; is a sequence satisfying a recurrence rule of the form:&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt; with coefficients &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, then there exist &lt;span&gt;&lt;math&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; such that for all &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; the following representations work:&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;⌊&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mo&gt;⌈&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;⌉&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mrow&gt;&lt;mi&gt;mod&lt;/mi&gt;&lt;/mrow&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;⌋&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;⌈&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;⌉&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;sgn&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mrow&gt;&lt;mi&gt;mod&lt;/mi&gt;&lt;/mrow&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mrow&gt;&lt;mi&gt;mod&lt;/mi&gt;&lt;/mrow&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt; Here &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; are polynomials with integer coefficients in &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;. Th","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"130 ","pages":"Article 102433"},"PeriodicalIF":0.6,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143454136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wilf-Zeilberger seeds and non-trivial hypergeometric identities
IF 0.6 4区 数学
Journal of Symbolic Computation Pub Date : 2025-01-28 DOI: 10.1016/j.jsc.2025.102421
Kam Cheong Au
{"title":"Wilf-Zeilberger seeds and non-trivial hypergeometric identities","authors":"Kam Cheong Au","doi":"10.1016/j.jsc.2025.102421","DOIUrl":"10.1016/j.jsc.2025.102421","url":null,"abstract":"<div><div>We introduce a systematic approach for generating Wilf-Zeilberger-pairs, and prove some hypergeometric identities conjectured by J. Guillera, Z.W. Sun, Y. Zhao and others, including two Ramanujan-<span><math><mn>1</mn><mo>/</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span>, one <span><math><mn>1</mn><mo>/</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> formulas as well as a remarkable series for <span><math><mi>ζ</mi><mo>(</mo><mn>5</mn><mo>)</mo></math></span>.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"130 ","pages":"Article 102421"},"PeriodicalIF":0.6,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143176023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
First-order factors of linear Mahler operators
IF 0.6 4区 数学
Journal of Symbolic Computation Pub Date : 2025-01-28 DOI: 10.1016/j.jsc.2025.102424
Frédéric Chyzak , Thomas Dreyfus , Philippe Dumas , Marc Mezzarobba
{"title":"First-order factors of linear Mahler operators","authors":"Frédéric Chyzak ,&nbsp;Thomas Dreyfus ,&nbsp;Philippe Dumas ,&nbsp;Marc Mezzarobba","doi":"10.1016/j.jsc.2025.102424","DOIUrl":"10.1016/j.jsc.2025.102424","url":null,"abstract":"<div><div>We develop and compare two algorithms for computing first-order right-hand factors in the ring of linear Mahler operators <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>r</mi></mrow></msub><msup><mrow><mi>M</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>+</mo><mo>…</mo><mo>+</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>M</mi><mo>+</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> where <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> are polynomials in <em>x</em> and <span><math><mi>M</mi><mi>x</mi><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>b</mi></mrow></msup><mi>M</mi></math></span> for some integer <span><math><mi>b</mi><mo>≥</mo><mn>2</mn></math></span>. In other words, we give algorithms for finding all formal infinite product solutions of linear functional equations <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mi>f</mi><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><msup><mrow><mi>b</mi></mrow><mrow><mi>r</mi></mrow></msup></mrow></msup><mo>)</mo><mo>+</mo><mo>…</mo><mo>+</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mi>f</mi><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>b</mi></mrow></msup><mo>)</mo><mo>+</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>.</div><div>The first of our algorithms is adapted from Petkovšek's classical algorithm for the analogous problem in the case of linear recurrences. The second one proceeds by computing a basis of generalized power series solutions of the functional equation and by using Hermite–Padé approximants to detect those linear combinations of the solutions that correspond to first-order factors.</div><div>We present implementations of both algorithms and discuss their use in combination with criteria from the literature to prove the differential transcendence of power series solutions of Mahler equations.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"130 ","pages":"Article 102424"},"PeriodicalIF":0.6,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143288038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The conjugacy problem and canonical representatives in finitely generated nilpotent groups
IF 0.6 4区 数学
Journal of Symbolic Computation Pub Date : 2025-01-27 DOI: 10.1016/j.jsc.2025.102422
Bettina Eick, Óscar Fernández Ayala
{"title":"The conjugacy problem and canonical representatives in finitely generated nilpotent groups","authors":"Bettina Eick,&nbsp;Óscar Fernández Ayala","doi":"10.1016/j.jsc.2025.102422","DOIUrl":"10.1016/j.jsc.2025.102422","url":null,"abstract":"<div><div>We introduce a variation on the conjugacy problem for elements and subgroups in a finitely generated nilpotent group <em>G</em> given by a nilpotent presentation and we describe effective algorithms for its solution. While the classical conjugacy problem takes elements or subgroups <em>a</em> and <em>b</em> of <em>G</em> and asks to construct <span><math><mi>g</mi><mo>∈</mo><mi>G</mi></math></span> with <span><math><msup><mrow><mi>a</mi></mrow><mrow><mi>g</mi></mrow></msup><mo>=</mo><mi>b</mi></math></span>, our variation defines and determines a <em>canonical representative</em> <span><math><mi>C</mi><mi>a</mi><mi>n</mi><msub><mrow><mi>o</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>a</mi><mo>)</mo></math></span> in <span><math><msup><mrow><mi>a</mi></mrow><mrow><mi>G</mi></mrow></msup></math></span>. This allows to solve the conjugacy problem via an equality test <span><math><mi>C</mi><mi>a</mi><mi>n</mi><msub><mrow><mi>o</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>a</mi><mo>)</mo><mo>=</mo><mi>C</mi><mi>a</mi><mi>n</mi><msub><mrow><mi>o</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>b</mi><mo>)</mo></math></span>. Additionally, our algorithms compute the associated centralizers or normalizers, respectively. We exhibit a variety of examples to demonstrate that our new methods are highly effective and often outperform the existing methods to solve the conjugacy problems for elements and subgroups in finitely generated nilpotent groups.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"130 ","pages":"Article 102422"},"PeriodicalIF":0.6,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143176022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信