通过彩色多重zeta值和傅立叶-勒让德级数展开的apacry型级数

IF 1.1 4区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Xin Chen, Weiping Wang
{"title":"通过彩色多重zeta值和傅立叶-勒让德级数展开的apacry型级数","authors":"Xin Chen,&nbsp;Weiping Wang","doi":"10.1016/j.jsc.2025.102508","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, by applying the general Fourier-Legendre series expansion, we establish four general series transformations, and obtain a range of relations between the parametric Apéry-type series and the double sums of products of multiple harmonic sums (MHSs) or multiple <em>t</em>-harmonic sums (MtSs) from the Fourier-Legendre series expansions of the complete elliptic integrals of the first and second kind as well as two special expansions provided recently in the literature. By establishing the linearization theorem for the double sums of products above, and using the methods of partial fraction decomposition and transformation of summations, we show that these parametric Apéry-type series are expressible in terms of some elementary series involving MHSs and MtSs, and finally reducible, with an extra factor <span><math><mn>1</mn><mo>/</mo><mi>π</mi></math></span>, to linear combinations of alternating multiple zeta values and colored multiple zeta values of level four. By specifying the parameters, we determine the evaluations of many special Apéry-type series.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"134 ","pages":"Article 102508"},"PeriodicalIF":1.1000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Apéry-type series via colored multiple zeta values and Fourier-Legendre series expansions\",\"authors\":\"Xin Chen,&nbsp;Weiping Wang\",\"doi\":\"10.1016/j.jsc.2025.102508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, by applying the general Fourier-Legendre series expansion, we establish four general series transformations, and obtain a range of relations between the parametric Apéry-type series and the double sums of products of multiple harmonic sums (MHSs) or multiple <em>t</em>-harmonic sums (MtSs) from the Fourier-Legendre series expansions of the complete elliptic integrals of the first and second kind as well as two special expansions provided recently in the literature. By establishing the linearization theorem for the double sums of products above, and using the methods of partial fraction decomposition and transformation of summations, we show that these parametric Apéry-type series are expressible in terms of some elementary series involving MHSs and MtSs, and finally reducible, with an extra factor <span><math><mn>1</mn><mo>/</mo><mi>π</mi></math></span>, to linear combinations of alternating multiple zeta values and colored multiple zeta values of level four. By specifying the parameters, we determine the evaluations of many special Apéry-type series.</div></div>\",\"PeriodicalId\":50031,\"journal\":{\"name\":\"Journal of Symbolic Computation\",\"volume\":\"134 \",\"pages\":\"Article 102508\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symbolic Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747717125000902\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717125000902","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

本文应用傅里叶-勒让德级数的一般展开,建立了四种一般级数变换,并从文献中提供的第一类和第二类完全椭圆积分的傅里叶-勒让德级数展开式以及两种特殊展开式中,得到了参数ap型级数与多重调和和(mss)或多重t调和和(mss)乘积的二重和之间的一系列关系。通过建立二重乘积和的线性化定理,利用部分分式分解和求和变换的方法,我们证明了这些参数ap型级数可以用一些包含mhs和mss的初等级数来表示,并在多出一个1/π因子的情况下,最终可约为4级交替多重zeta值和彩色多重zeta值的线性组合。通过指定参数,我们确定了许多特殊apsamry型系列的评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Apéry-type series via colored multiple zeta values and Fourier-Legendre series expansions
In this paper, by applying the general Fourier-Legendre series expansion, we establish four general series transformations, and obtain a range of relations between the parametric Apéry-type series and the double sums of products of multiple harmonic sums (MHSs) or multiple t-harmonic sums (MtSs) from the Fourier-Legendre series expansions of the complete elliptic integrals of the first and second kind as well as two special expansions provided recently in the literature. By establishing the linearization theorem for the double sums of products above, and using the methods of partial fraction decomposition and transformation of summations, we show that these parametric Apéry-type series are expressible in terms of some elementary series involving MHSs and MtSs, and finally reducible, with an extra factor 1/π, to linear combinations of alternating multiple zeta values and colored multiple zeta values of level four. By specifying the parameters, we determine the evaluations of many special Apéry-type series.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Symbolic Computation
Journal of Symbolic Computation 工程技术-计算机:理论方法
CiteScore
2.10
自引率
14.30%
发文量
75
审稿时长
142 days
期刊介绍: An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects. It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信