{"title":"平面微分叶理上的符号积分","authors":"Thierry Combot","doi":"10.1016/j.jsc.2025.102506","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the problem of symbolic integration of <span><math><mo>∫</mo><mi>G</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo><mi>d</mi><mi>x</mi></math></span> where <em>G</em> is rational and <span><math><mi>y</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is a non algebraic solution of a differential equation <span><math><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>F</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo></math></span> with <em>F</em> rational. Substituting in the integral <span><math><mi>y</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> by <span><math><mi>y</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>h</mi><mo>)</mo></math></span>, the general solution of <span><math><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>F</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo></math></span>, we have a parametrized integral <span><math><mi>I</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>h</mi><mo>)</mo></math></span>. We prove that <span><math><mi>I</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>h</mi><mo>)</mo></math></span> is, as a two variable function in <span><math><mi>x</mi><mo>,</mo><mi>h</mi></math></span>, either differentially transcendental, or, with a good parametrization in <em>h</em>, there exists a linear differential operator <em>L</em> in <em>h</em> with constant coefficients, called a telescoper, such that <span><math><mi>L</mi><mi>I</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>h</mi><mo>)</mo></math></span> is rational in <span><math><mi>x</mi><mo>,</mo><mi>y</mi></math></span> and the <em>h</em> derivatives of <em>y</em>. This notion generalizes elementary integration. We present an algorithm to compute such telescoper given a priori bound on the order ord of <em>L</em> and degree <em>N</em> of <span><math><mi>L</mi><mi>I</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>h</mi><mo>)</mo></math></span>, with complexity <span><math><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msup><mrow><mi>N</mi></mrow><mrow><mi>ω</mi><mo>+</mo><mn>1</mn></mrow></msup><msup><mrow><mtext>ord</mtext></mrow><mrow><mi>ω</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>+</mo><mi>N</mi><msup><mrow><mtext>ord</mtext></mrow><mrow><mi>ω</mi><mo>+</mo><mn>3</mn></mrow></msup><mo>)</mo></math></span>. For the specific foliation <span><math><mi>y</mi><mo>=</mo><mi>ln</mi><mo></mo><mi>x</mi></math></span>, a more complete algorithm without a priori bound is presented. Oppositely, non existence of telescoper is proven for a classical planar Hamiltonian system. As an application, we present an algorithm which always finds, if they exist, the Liouvillian solutions of a planar rational vector field, given a bound large enough for some notion of complexity height.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"134 ","pages":"Article 102506"},"PeriodicalIF":1.1000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symbolic integration on planar differential foliations\",\"authors\":\"Thierry Combot\",\"doi\":\"10.1016/j.jsc.2025.102506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the problem of symbolic integration of <span><math><mo>∫</mo><mi>G</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo><mi>d</mi><mi>x</mi></math></span> where <em>G</em> is rational and <span><math><mi>y</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is a non algebraic solution of a differential equation <span><math><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>F</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo></math></span> with <em>F</em> rational. Substituting in the integral <span><math><mi>y</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> by <span><math><mi>y</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>h</mi><mo>)</mo></math></span>, the general solution of <span><math><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>F</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo></math></span>, we have a parametrized integral <span><math><mi>I</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>h</mi><mo>)</mo></math></span>. We prove that <span><math><mi>I</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>h</mi><mo>)</mo></math></span> is, as a two variable function in <span><math><mi>x</mi><mo>,</mo><mi>h</mi></math></span>, either differentially transcendental, or, with a good parametrization in <em>h</em>, there exists a linear differential operator <em>L</em> in <em>h</em> with constant coefficients, called a telescoper, such that <span><math><mi>L</mi><mi>I</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>h</mi><mo>)</mo></math></span> is rational in <span><math><mi>x</mi><mo>,</mo><mi>y</mi></math></span> and the <em>h</em> derivatives of <em>y</em>. This notion generalizes elementary integration. We present an algorithm to compute such telescoper given a priori bound on the order ord of <em>L</em> and degree <em>N</em> of <span><math><mi>L</mi><mi>I</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>h</mi><mo>)</mo></math></span>, with complexity <span><math><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msup><mrow><mi>N</mi></mrow><mrow><mi>ω</mi><mo>+</mo><mn>1</mn></mrow></msup><msup><mrow><mtext>ord</mtext></mrow><mrow><mi>ω</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>+</mo><mi>N</mi><msup><mrow><mtext>ord</mtext></mrow><mrow><mi>ω</mi><mo>+</mo><mn>3</mn></mrow></msup><mo>)</mo></math></span>. For the specific foliation <span><math><mi>y</mi><mo>=</mo><mi>ln</mi><mo></mo><mi>x</mi></math></span>, a more complete algorithm without a priori bound is presented. Oppositely, non existence of telescoper is proven for a classical planar Hamiltonian system. As an application, we present an algorithm which always finds, if they exist, the Liouvillian solutions of a planar rational vector field, given a bound large enough for some notion of complexity height.</div></div>\",\"PeriodicalId\":50031,\"journal\":{\"name\":\"Journal of Symbolic Computation\",\"volume\":\"134 \",\"pages\":\"Article 102506\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symbolic Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747717125000884\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717125000884","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Symbolic integration on planar differential foliations
We consider the problem of symbolic integration of where G is rational and is a non algebraic solution of a differential equation with F rational. Substituting in the integral by , the general solution of , we have a parametrized integral . We prove that is, as a two variable function in , either differentially transcendental, or, with a good parametrization in h, there exists a linear differential operator L in h with constant coefficients, called a telescoper, such that is rational in and the h derivatives of y. This notion generalizes elementary integration. We present an algorithm to compute such telescoper given a priori bound on the order ord of L and degree N of , with complexity . For the specific foliation , a more complete algorithm without a priori bound is presented. Oppositely, non existence of telescoper is proven for a classical planar Hamiltonian system. As an application, we present an algorithm which always finds, if they exist, the Liouvillian solutions of a planar rational vector field, given a bound large enough for some notion of complexity height.
期刊介绍:
An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects.
It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.