平面微分叶理上的符号积分

IF 1.1 4区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Thierry Combot
{"title":"平面微分叶理上的符号积分","authors":"Thierry Combot","doi":"10.1016/j.jsc.2025.102506","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the problem of symbolic integration of <span><math><mo>∫</mo><mi>G</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo><mi>d</mi><mi>x</mi></math></span> where <em>G</em> is rational and <span><math><mi>y</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is a non algebraic solution of a differential equation <span><math><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>F</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo></math></span> with <em>F</em> rational. Substituting in the integral <span><math><mi>y</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> by <span><math><mi>y</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>h</mi><mo>)</mo></math></span>, the general solution of <span><math><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>F</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo></math></span>, we have a parametrized integral <span><math><mi>I</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>h</mi><mo>)</mo></math></span>. We prove that <span><math><mi>I</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>h</mi><mo>)</mo></math></span> is, as a two variable function in <span><math><mi>x</mi><mo>,</mo><mi>h</mi></math></span>, either differentially transcendental, or, with a good parametrization in <em>h</em>, there exists a linear differential operator <em>L</em> in <em>h</em> with constant coefficients, called a telescoper, such that <span><math><mi>L</mi><mi>I</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>h</mi><mo>)</mo></math></span> is rational in <span><math><mi>x</mi><mo>,</mo><mi>y</mi></math></span> and the <em>h</em> derivatives of <em>y</em>. This notion generalizes elementary integration. We present an algorithm to compute such telescoper given a priori bound on the order ord of <em>L</em> and degree <em>N</em> of <span><math><mi>L</mi><mi>I</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>h</mi><mo>)</mo></math></span>, with complexity <span><math><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msup><mrow><mi>N</mi></mrow><mrow><mi>ω</mi><mo>+</mo><mn>1</mn></mrow></msup><msup><mrow><mtext>ord</mtext></mrow><mrow><mi>ω</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>+</mo><mi>N</mi><msup><mrow><mtext>ord</mtext></mrow><mrow><mi>ω</mi><mo>+</mo><mn>3</mn></mrow></msup><mo>)</mo></math></span>. For the specific foliation <span><math><mi>y</mi><mo>=</mo><mi>ln</mi><mo>⁡</mo><mi>x</mi></math></span>, a more complete algorithm without a priori bound is presented. Oppositely, non existence of telescoper is proven for a classical planar Hamiltonian system. As an application, we present an algorithm which always finds, if they exist, the Liouvillian solutions of a planar rational vector field, given a bound large enough for some notion of complexity height.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"134 ","pages":"Article 102506"},"PeriodicalIF":1.1000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symbolic integration on planar differential foliations\",\"authors\":\"Thierry Combot\",\"doi\":\"10.1016/j.jsc.2025.102506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the problem of symbolic integration of <span><math><mo>∫</mo><mi>G</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo><mi>d</mi><mi>x</mi></math></span> where <em>G</em> is rational and <span><math><mi>y</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is a non algebraic solution of a differential equation <span><math><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>F</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo></math></span> with <em>F</em> rational. Substituting in the integral <span><math><mi>y</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> by <span><math><mi>y</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>h</mi><mo>)</mo></math></span>, the general solution of <span><math><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>F</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo></math></span>, we have a parametrized integral <span><math><mi>I</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>h</mi><mo>)</mo></math></span>. We prove that <span><math><mi>I</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>h</mi><mo>)</mo></math></span> is, as a two variable function in <span><math><mi>x</mi><mo>,</mo><mi>h</mi></math></span>, either differentially transcendental, or, with a good parametrization in <em>h</em>, there exists a linear differential operator <em>L</em> in <em>h</em> with constant coefficients, called a telescoper, such that <span><math><mi>L</mi><mi>I</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>h</mi><mo>)</mo></math></span> is rational in <span><math><mi>x</mi><mo>,</mo><mi>y</mi></math></span> and the <em>h</em> derivatives of <em>y</em>. This notion generalizes elementary integration. We present an algorithm to compute such telescoper given a priori bound on the order ord of <em>L</em> and degree <em>N</em> of <span><math><mi>L</mi><mi>I</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>h</mi><mo>)</mo></math></span>, with complexity <span><math><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msup><mrow><mi>N</mi></mrow><mrow><mi>ω</mi><mo>+</mo><mn>1</mn></mrow></msup><msup><mrow><mtext>ord</mtext></mrow><mrow><mi>ω</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>+</mo><mi>N</mi><msup><mrow><mtext>ord</mtext></mrow><mrow><mi>ω</mi><mo>+</mo><mn>3</mn></mrow></msup><mo>)</mo></math></span>. For the specific foliation <span><math><mi>y</mi><mo>=</mo><mi>ln</mi><mo>⁡</mo><mi>x</mi></math></span>, a more complete algorithm without a priori bound is presented. Oppositely, non existence of telescoper is proven for a classical planar Hamiltonian system. As an application, we present an algorithm which always finds, if they exist, the Liouvillian solutions of a planar rational vector field, given a bound large enough for some notion of complexity height.</div></div>\",\"PeriodicalId\":50031,\"journal\":{\"name\":\"Journal of Symbolic Computation\",\"volume\":\"134 \",\"pages\":\"Article 102506\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symbolic Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747717125000884\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717125000884","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

考虑∫G(x,y(x))dx的符号积分问题,其中G是有理数,y(x)是微分方程y ' (x)=F(x,y(x))的非代数解,F是有理数。将积分y(x)代入y(x,h)得到y ' (x)=F(x,y(x))的通解,得到参数化积分I(x,h)我们证明了I(x,h)作为x,h中的两个变量函数,或者是微分超越的,或者,在h中有一个好的参数化,在h中存在一个常系数的线性微分算子L,称为伸缩算子,使得LI(x,h)在x,y和y的h阶导数中是有理数。这个概念推广了初等积分。在给定LI(x,h)的L阶和N阶的先验界的情况下,我们提出了一种计算这种望远镜的算法,其复杂度为O ~ (Nω+1阶ω−1+Nordω+3)。对于特定叶形y=ln ln x,给出了一种更完备的无先验界算法。相反,对经典平面哈密顿系统证明了望远镜的不存在性。作为一种应用,我们提出了一种算法,在给定一个足够大的复杂度高度概念的界时,它总能找到平面有理向量场的Liouvillian解,如果它们存在的话。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symbolic integration on planar differential foliations
We consider the problem of symbolic integration of G(x,y(x))dx where G is rational and y(x) is a non algebraic solution of a differential equation y(x)=F(x,y(x)) with F rational. Substituting in the integral y(x) by y(x,h), the general solution of y(x)=F(x,y(x)), we have a parametrized integral I(x,h). We prove that I(x,h) is, as a two variable function in x,h, either differentially transcendental, or, with a good parametrization in h, there exists a linear differential operator L in h with constant coefficients, called a telescoper, such that LI(x,h) is rational in x,y and the h derivatives of y. This notion generalizes elementary integration. We present an algorithm to compute such telescoper given a priori bound on the order ord of L and degree N of LI(x,h), with complexity O˜(Nω+1ordω1+Nordω+3). For the specific foliation y=lnx, a more complete algorithm without a priori bound is presented. Oppositely, non existence of telescoper is proven for a classical planar Hamiltonian system. As an application, we present an algorithm which always finds, if they exist, the Liouvillian solutions of a planar rational vector field, given a bound large enough for some notion of complexity height.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Symbolic Computation
Journal of Symbolic Computation 工程技术-计算机:理论方法
CiteScore
2.10
自引率
14.30%
发文量
75
审稿时长
142 days
期刊介绍: An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects. It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信