Journal of Symbolic Computation最新文献

筛选
英文 中文
An improved complexity bound for computing the topology of a real algebraic space curve 计算实代数空间曲线拓扑的改进复杂度约束
IF 0.7 4区 数学
Journal of Symbolic Computation Pub Date : 2024-02-21 DOI: 10.1016/j.jsc.2024.102309
Jin-San Cheng , Kai Jin , Marc Pouget , Junyi Wen , Bingwei Zhang
{"title":"An improved complexity bound for computing the topology of a real algebraic space curve","authors":"Jin-San Cheng ,&nbsp;Kai Jin ,&nbsp;Marc Pouget ,&nbsp;Junyi Wen ,&nbsp;Bingwei Zhang","doi":"10.1016/j.jsc.2024.102309","DOIUrl":"10.1016/j.jsc.2024.102309","url":null,"abstract":"<div><p>We propose a new algorithm to compute the topology of a real algebraic space curve. The novelties of this algorithm are a new technique to achieve the lifting step which recovers points of the space curve in each plane fiber from several projections and a weaker notion of generic position. As distinct to previous work, our <em>sweep generic position</em> does not require that <em>x</em>-critical points have different <em>x</em>-coordinates. The complexity of achieving this sweep generic position property is thus no longer a bottleneck in term of complexity. The bit complexity of our algorithm is <span><math><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msup><mrow><mi>d</mi></mrow><mrow><mn>18</mn></mrow></msup><mo>+</mo><msup><mrow><mi>d</mi></mrow><mrow><mn>17</mn></mrow></msup><mi>τ</mi><mo>)</mo></math></span> where <em>d</em> and <em>τ</em> bound the degree and the bitsize of the integer coefficients, respectively, of the defining polynomials of the curve and polylogarithmic factors are ignored. To the best of our knowledge, this improves upon the best currently known results at least by a factor of <span><math><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"125 ","pages":"Article 102309"},"PeriodicalIF":0.7,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139919633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rational solutions to the first order difference equations in the bivariate difference field 二维差分场中一阶差分方程的有理解
IF 0.7 4区 数学
Journal of Symbolic Computation Pub Date : 2024-02-09 DOI: 10.1016/j.jsc.2024.102308
Qing-Hu Hou , Yarong Wei
{"title":"Rational solutions to the first order difference equations in the bivariate difference field","authors":"Qing-Hu Hou ,&nbsp;Yarong Wei","doi":"10.1016/j.jsc.2024.102308","DOIUrl":"https://doi.org/10.1016/j.jsc.2024.102308","url":null,"abstract":"<div><p>Inspired by Karr's algorithm, we consider the summations involving a sequence satisfying a recurrence of order two. The structure of such summations provides an algebraic framework for solving the difference equations of form <span><math><mi>a</mi><mi>σ</mi><mo>(</mo><mi>g</mi><mo>)</mo><mo>+</mo><mi>b</mi><mi>g</mi><mo>=</mo><mi>f</mi></math></span> in the bivariate difference field <span><math><mo>(</mo><mi>F</mi><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>,</mo><mi>σ</mi><mo>)</mo></math></span>, where <span><math><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>f</mi><mo>∈</mo><mi>F</mi><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span> are known binary functions of <em>α</em>, <em>β</em>, and <em>α</em>, <em>β</em> are two algebraically independent transcendental elements, <em>σ</em> is a transformation that satisfies <span><math><mi>σ</mi><mo>(</mo><mi>α</mi><mo>)</mo><mo>=</mo><mi>β</mi></math></span>, <span><math><mi>σ</mi><mo>(</mo><mi>β</mi><mo>)</mo><mo>=</mo><mi>u</mi><mi>α</mi><mo>+</mo><mi>v</mi><mi>β</mi></math></span>, where <span><math><mi>u</mi><mo>,</mo><mi>v</mi><mo>≠</mo><mn>0</mn><mo>∈</mo><mi>F</mi></math></span>. Based on it, we then describe algorithms for finding the universal denominator for those equations in the bivariate difference field under certain assumptions. This reduces the general problem of finding the rational solutions of such equations to the problem of finding the polynomial solutions of such equations.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"124 ","pages":"Article 102308"},"PeriodicalIF":0.7,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139901497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tensor decompositions on simplicial complexes with invariance 具有不变性的简单复数上的张量分解
IF 0.7 4区 数学
Journal of Symbolic Computation Pub Date : 2024-01-19 DOI: 10.1016/j.jsc.2024.102299
Gemma De las Cuevas , Matt Hoogsteder Riera , Tim Netzer
{"title":"Tensor decompositions on simplicial complexes with invariance","authors":"Gemma De las Cuevas ,&nbsp;Matt Hoogsteder Riera ,&nbsp;Tim Netzer","doi":"10.1016/j.jsc.2024.102299","DOIUrl":"10.1016/j.jsc.2024.102299","url":null,"abstract":"<div><p><span>Tensors are ubiquitous in mathematics and the sciences, as they allow to store information in a concise way. Decompositions of tensors may give insights into their structure and complexity. In this work, we develop a new framework for decompositions of tensors, taking into account invariance, positivity and a geometric arrangement of their local spaces. We define an invariant decomposition with indices arranged on a simplicial complex which is explicitly invariant under a group action. We give a constructive proof that this decomposition exists for all invariant tensors, after possibly enriching the simplicial complex. We further define several decompositions certifying positivity, and prove similar existence results, as well as inequalities between the corresponding ranks. Our results generalize results from the theory of </span>tensor networks, used in the study of quantum many-body systems, for example.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"124 ","pages":"Article 102299"},"PeriodicalIF":0.7,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139497517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computing the binomial part of a polynomial ideal 计算多项式理想的二项式部分
IF 0.7 4区 数学
Journal of Symbolic Computation Pub Date : 2024-01-14 DOI: 10.1016/j.jsc.2024.102298
Martin Kreuzer, Florian Walsh
{"title":"Computing the binomial part of a polynomial ideal","authors":"Martin Kreuzer,&nbsp;Florian Walsh","doi":"10.1016/j.jsc.2024.102298","DOIUrl":"10.1016/j.jsc.2024.102298","url":null,"abstract":"<div><p>Given an ideal <em>I</em> in a polynomial ring <span><math><mi>K</mi><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></math></span> over a field <em>K</em>, we present a complete algorithm to compute the binomial part of <em>I</em>, i.e., the subideal <span><math><mrow><mi>Bin</mi></mrow><mo>(</mo><mi>I</mi><mo>)</mo></math></span> of <em>I</em> generated by all monomials and binomials in <em>I</em>. This is achieved step-by-step. First we collect and extend several algorithms for computing exponent lattices in different kinds of fields. Then we generalize them to compute exponent lattices of units in 0-dimensional <em>K</em>-algebras, where we have to generalize the computation of the separable part of an algebra to non-perfect fields in characteristic <em>p</em>. Next we examine the computation of unit lattices in finitely generated <em>K</em>-algebras, as well as their associated characters and lattice ideals. This allows us to calculate <span><math><mrow><mi>Bin</mi></mrow><mo>(</mo><mi>I</mi><mo>)</mo></math></span> when <em>I</em> is saturated with respect to the indeterminates by reducing the task to the 0-dimensional case. Finally, we treat the computation of <span><math><mrow><mi>Bin</mi></mrow><mo>(</mo><mi>I</mi><mo>)</mo></math></span> for general ideals by computing their cellular decomposition and dealing with finitely many special ideals called <span><math><mo>(</mo><mi>s</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span>-binomial parts. All algorithms have been implemented in <span>SageMath</span>.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"124 ","pages":"Article 102298"},"PeriodicalIF":0.7,"publicationDate":"2024-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0747717124000026/pdfft?md5=bc32bb62dcb12f7f2c1d113994ec49bf&pid=1-s2.0-S0747717124000026-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139462707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A post-quantum key exchange protocol from the intersection of conics 来自圆锥交点的后量子密钥交换协议
IF 0.7 4区 数学
Journal of Symbolic Computation Pub Date : 2024-01-05 DOI: 10.1016/j.jsc.2024.102297
Alberto Alzati, Daniele Di Tullio, Manoj Gyawali, Alfonso Tortora
{"title":"A post-quantum key exchange protocol from the intersection of conics","authors":"Alberto Alzati, Daniele Di Tullio, Manoj Gyawali, Alfonso Tortora","doi":"10.1016/j.jsc.2024.102297","DOIUrl":"https://doi.org/10.1016/j.jsc.2024.102297","url":null,"abstract":"<p>In this paper we present a key exchange protocol in which Alice and Bob have secret keys given by two conics embedded in a large ambient space by means of the Veronese embedding and public keys given by hyperplanes containing the embedded curves. Both of them construct some common invariants given by the intersection of two conics.</p>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"7 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139102670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An effective decomposition theorem for Schubert varieties 舒伯特变换的一个有效分解定理
IF 0.7 4区 数学
Journal of Symbolic Computation Pub Date : 2024-01-01 DOI: 10.1016/j.jsc.2023.102238
Francesca Cioffi, Davide Franco, Carmine Sessa
{"title":"An effective decomposition theorem for Schubert varieties","authors":"Francesca Cioffi,&nbsp;Davide Franco,&nbsp;Carmine Sessa","doi":"10.1016/j.jsc.2023.102238","DOIUrl":"https://doi.org/10.1016/j.jsc.2023.102238","url":null,"abstract":"","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"121 ","pages":"102238"},"PeriodicalIF":0.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49727688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theta nullvalues of supersingular Abelian varieties 超星阿贝尔变体的 Theta 空值
IF 0.7 4区 数学
Journal of Symbolic Computation Pub Date : 2023-12-29 DOI: 10.1016/j.jsc.2023.102296
Andreas Pieper
{"title":"Theta nullvalues of supersingular Abelian varieties","authors":"Andreas Pieper","doi":"10.1016/j.jsc.2023.102296","DOIUrl":"10.1016/j.jsc.2023.102296","url":null,"abstract":"<div><p>Let <em>η</em><span> be a polarization with connected kernel on a superspecial abelian variety </span><span><math><msup><mrow><mi>E</mi></mrow><mrow><mi>g</mi></mrow></msup></math></span>. We give a sufficient criterion which allows the computation of the theta nullvalues of any quotient of <span><math><msup><mrow><mi>E</mi></mrow><mrow><mi>g</mi></mrow></msup></math></span> by a maximal isotropic subgroup scheme of <span><math><mi>ker</mi><mo>⁡</mo><mo>(</mo><mi>η</mi><mo>)</mo></math></span> effectively.</p><p>This criterion is satisfied in many situations studied by <span>Li and Oort (1998)</span>. We used our method to implement an algorithm that computes supersingular curves of genus 3.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"123 ","pages":"Article 102296"},"PeriodicalIF":0.7,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139065849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A note on the relation between recognisable series and regular sequences, and their minimal linear representations 关于可识别数列和正则表达式及其最小线性表示之间关系的说明
IF 0.7 4区 数学
Journal of Symbolic Computation Pub Date : 2023-12-28 DOI: 10.1016/j.jsc.2023.102295
Clemens Heuberger , Daniel Krenn , Gabriel F. Lipnik
{"title":"A note on the relation between recognisable series and regular sequences, and their minimal linear representations","authors":"Clemens Heuberger ,&nbsp;Daniel Krenn ,&nbsp;Gabriel F. Lipnik","doi":"10.1016/j.jsc.2023.102295","DOIUrl":"10.1016/j.jsc.2023.102295","url":null,"abstract":"<div><p>In this note, we precisely elaborate the connection between recognisable series (in the sense of Berstel and Reutenauer) and <em>q</em>-regular sequences (in the sense of Allouche and Shallit) via their linear representations. In particular, we show that the minimisation algorithm for recognisable series can also be used to minimise linear representations of <em>q</em>-regular sequences.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"123 ","pages":"Article 102295"},"PeriodicalIF":0.7,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0747717123001098/pdfft?md5=492907babc8de19f0ee8ae11896722d4&pid=1-s2.0-S0747717123001098-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139065963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Axioms for a theory of signature bases 签名基础理论的公理
IF 0.7 4区 数学
Journal of Symbolic Computation Pub Date : 2023-12-18 DOI: 10.1016/j.jsc.2023.102275
Pierre Lairez
{"title":"Axioms for a theory of signature bases","authors":"Pierre Lairez","doi":"10.1016/j.jsc.2023.102275","DOIUrl":"10.1016/j.jsc.2023.102275","url":null,"abstract":"<div><p><span>Twenty years after the discovery of the F5 algorithm, Gröbner bases with signatures are still challenging to understand and to adapt to different settings. This contrasts with Buchberger's algorithm, which we can bend in many directions keeping correctness and termination obvious. I propose an axiomatic approach to Gröbner bases with signatures with the purpose of uncoupling the theory and the algorithms, giving general results applicable in many different settings (e.g. Gröbner for </span>submodules, F4-style reduction, noncommutative rings, non-Noetherian settings, etc.), and extending the reach of signature algorithms.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"123 ","pages":"Article 102275"},"PeriodicalIF":0.7,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138742217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computing primitive idempotents in finite commutative rings and applications 计算有限交换环中的基元幂级数及其应用
IF 0.7 4区 数学
Journal of Symbolic Computation Pub Date : 2023-12-15 DOI: 10.1016/j.jsc.2023.102294
Mugurel Barcau , Vicenţiu Paşol
{"title":"Computing primitive idempotents in finite commutative rings and applications","authors":"Mugurel Barcau ,&nbsp;Vicenţiu Paşol","doi":"10.1016/j.jsc.2023.102294","DOIUrl":"10.1016/j.jsc.2023.102294","url":null,"abstract":"<div><p><span>In this paper, we compute an algebraic decomposition of black-box rings in the generic ring model. More precisely, we explicitly decompose a black-box ring as a direct product of a nilpotent black-box ring and unital local black-box rings, by computing all its primitive idempotents. The algorithm presented in this paper uses quantum subroutines for the computation of the </span><em>p</em>-power parts of a black-box ring and then classical algorithms for the computation of the corresponding primitive idempotents. As a by-product, we get that the reduction of a black-box ring is also a black-box ring. The first application of this decomposition is an extension of the work of <span>Maurer and Raub (2007)</span> on representation problem in black-box finite fields to the case of reduced <em>p</em>-power black-box rings. Another important application is an <span><math><msup><mrow><mtext>IND-CCA</mtext></mrow><mrow><mn>1</mn></mrow></msup></math></span><span> attack for any ring homomorphic encryption scheme<span> in the generic ring model. Moreover, when the plaintext space is a finite reduced black-box ring, we present a plaintext-recovery attack based on representation problem in black-box prime fields. In particular, if the ciphertext space has smooth characteristic, the plaintext-recovery attack is effectively computable in the generic ring model.</span></span></p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"123 ","pages":"Article 102294"},"PeriodicalIF":0.7,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138688298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信