Journal of Symbolic Computation最新文献

筛选
英文 中文
A computational approach to almost-inner derivations 几乎是内推导的计算方法
IF 0.7 4区 数学
Journal of Symbolic Computation Pub Date : 2024-03-04 DOI: 10.1016/j.jsc.2024.102312
Heiko Dietrich , Willem A. de Graaf
{"title":"A computational approach to almost-inner derivations","authors":"Heiko Dietrich ,&nbsp;Willem A. de Graaf","doi":"10.1016/j.jsc.2024.102312","DOIUrl":"https://doi.org/10.1016/j.jsc.2024.102312","url":null,"abstract":"<div><p>We present a computational approach to determine the space of almost-inner derivations of a finite dimensional Lie algebra given by a structure constant table. We also present an example of a Lie algebra for which the quotient algebra of the almost-inner derivations modulo the inner derivations is non-abelian. This answers a question of Kunyavskii and Ostapenko.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"125 ","pages":"Article 102312"},"PeriodicalIF":0.7,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0747717124000166/pdfft?md5=158ca0ceced5645dd3d6b5c19e5bfa5f&pid=1-s2.0-S0747717124000166-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140051681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stabilized recovery and model reduction for multivariate exponential polynomials 多变量指数多项式的稳定恢复和模型还原
IF 0.7 4区 数学
Journal of Symbolic Computation Pub Date : 2024-03-01 DOI: 10.1016/j.jsc.2024.102313
Juan Manuel Peña , Tomas Sauer
{"title":"Stabilized recovery and model reduction for multivariate exponential polynomials","authors":"Juan Manuel Peña ,&nbsp;Tomas Sauer","doi":"10.1016/j.jsc.2024.102313","DOIUrl":"https://doi.org/10.1016/j.jsc.2024.102313","url":null,"abstract":"<div><p>Recovery of multivariate exponential polynomials, i.e., the multivariate version of Prony's problem, can be stabilized by using more than the minimally needed multiinteger samples of the function. We present an algorithm that takes into account this extra information and prove a backward error estimate for the algebraic recovery method SMILE. In addition, we give a method to approximate data by an exponential polynomial sequence of a given structure as a step in the direction of multivariate model reduction.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"125 ","pages":"Article 102313"},"PeriodicalIF":0.7,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0747717124000178/pdfft?md5=a03807abfc64e6721e202a9e27a5dbdf&pid=1-s2.0-S0747717124000178-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140051680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computing a group action from the class field theory of imaginary hyperelliptic function fields 从类场论计算虚超椭圆函数场的群作用
IF 0.7 4区 数学
Journal of Symbolic Computation Pub Date : 2024-03-01 DOI: 10.1016/j.jsc.2024.102311
Antoine Leudière, Pierre-Jean Spaenlehauer
{"title":"Computing a group action from the class field theory of imaginary hyperelliptic function fields","authors":"Antoine Leudière,&nbsp;Pierre-Jean Spaenlehauer","doi":"10.1016/j.jsc.2024.102311","DOIUrl":"https://doi.org/10.1016/j.jsc.2024.102311","url":null,"abstract":"<div><p>We explore algorithmic aspects of a simply transitive commutative group action coming from the class field theory of imaginary hyperelliptic function fields. Namely, the Jacobian of an imaginary hyperelliptic curve defined over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> acts on a subset of isomorphism classes of Drinfeld modules. We describe an algorithm to compute the group action efficiently. This is a function field analog of the Couveignes-Rostovtsev-Stolbunov group action. We report on an explicit computation done with our proof-of-concept C++/NTL implementation; it took a fraction of a second on a standard computer. We prove that the problem of inverting the group action reduces to the problem of finding isogenies of fixed <em>τ</em>-degree between Drinfeld <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>X</mi><mo>]</mo></math></span>-modules, which is solvable in polynomial time thanks to an algorithm by Wesolowski. We give asymptotic complexity bounds for all algorithms presented in this paper.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"125 ","pages":"Article 102311"},"PeriodicalIF":0.7,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140051678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Matrix factorizations of the discriminant of Sn S 判别式的矩阵因式分解
IF 0.7 4区 数学
Journal of Symbolic Computation Pub Date : 2024-02-23 DOI: 10.1016/j.jsc.2024.102310
Eleonore Faber , Colin Ingalls , Simon May , Marco Talarico
{"title":"Matrix factorizations of the discriminant of Sn","authors":"Eleonore Faber ,&nbsp;Colin Ingalls ,&nbsp;Simon May ,&nbsp;Marco Talarico","doi":"10.1016/j.jsc.2024.102310","DOIUrl":"10.1016/j.jsc.2024.102310","url":null,"abstract":"<div><p>Consider the symmetric group <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> acting as a reflection group on the polynomial ring <span><math><mi>k</mi><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></math></span> where <em>k</em> is a field, such that Char(<em>k</em>) does not divide <em>n</em>!. We use Higher Specht polynomials to construct matrix factorizations of the discriminant of this group action: these matrix factorizations are indexed by partitions of <em>n</em> and respect the decomposition of the coinvariant algebra into isotypical components. The maximal Cohen–Macaulay modules associated to these matrix factorizations give rise to a noncommutative resolution of the discriminant and they correspond to the nontrivial irreducible representations of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. All our constructions are implemented in Macaulay2 and we provide several examples. We also discuss extensions of these results to Young subgroups of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and indicate how to generalize them to the reflection groups <span><math><mi>G</mi><mo>(</mo><mi>m</mi><mo>,</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>)</mo></math></span>.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"125 ","pages":"Article 102310"},"PeriodicalIF":0.7,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0747717124000142/pdfft?md5=688baaec9b10f27e6369b86c65d8e101&pid=1-s2.0-S0747717124000142-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139947723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An improved complexity bound for computing the topology of a real algebraic space curve 计算实代数空间曲线拓扑的改进复杂度约束
IF 0.7 4区 数学
Journal of Symbolic Computation Pub Date : 2024-02-21 DOI: 10.1016/j.jsc.2024.102309
Jin-San Cheng , Kai Jin , Marc Pouget , Junyi Wen , Bingwei Zhang
{"title":"An improved complexity bound for computing the topology of a real algebraic space curve","authors":"Jin-San Cheng ,&nbsp;Kai Jin ,&nbsp;Marc Pouget ,&nbsp;Junyi Wen ,&nbsp;Bingwei Zhang","doi":"10.1016/j.jsc.2024.102309","DOIUrl":"10.1016/j.jsc.2024.102309","url":null,"abstract":"<div><p>We propose a new algorithm to compute the topology of a real algebraic space curve. The novelties of this algorithm are a new technique to achieve the lifting step which recovers points of the space curve in each plane fiber from several projections and a weaker notion of generic position. As distinct to previous work, our <em>sweep generic position</em> does not require that <em>x</em>-critical points have different <em>x</em>-coordinates. The complexity of achieving this sweep generic position property is thus no longer a bottleneck in term of complexity. The bit complexity of our algorithm is <span><math><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msup><mrow><mi>d</mi></mrow><mrow><mn>18</mn></mrow></msup><mo>+</mo><msup><mrow><mi>d</mi></mrow><mrow><mn>17</mn></mrow></msup><mi>τ</mi><mo>)</mo></math></span> where <em>d</em> and <em>τ</em> bound the degree and the bitsize of the integer coefficients, respectively, of the defining polynomials of the curve and polylogarithmic factors are ignored. To the best of our knowledge, this improves upon the best currently known results at least by a factor of <span><math><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"125 ","pages":"Article 102309"},"PeriodicalIF":0.7,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139919633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rational solutions to the first order difference equations in the bivariate difference field 二维差分场中一阶差分方程的有理解
IF 0.7 4区 数学
Journal of Symbolic Computation Pub Date : 2024-02-09 DOI: 10.1016/j.jsc.2024.102308
Qing-Hu Hou , Yarong Wei
{"title":"Rational solutions to the first order difference equations in the bivariate difference field","authors":"Qing-Hu Hou ,&nbsp;Yarong Wei","doi":"10.1016/j.jsc.2024.102308","DOIUrl":"https://doi.org/10.1016/j.jsc.2024.102308","url":null,"abstract":"<div><p>Inspired by Karr's algorithm, we consider the summations involving a sequence satisfying a recurrence of order two. The structure of such summations provides an algebraic framework for solving the difference equations of form <span><math><mi>a</mi><mi>σ</mi><mo>(</mo><mi>g</mi><mo>)</mo><mo>+</mo><mi>b</mi><mi>g</mi><mo>=</mo><mi>f</mi></math></span> in the bivariate difference field <span><math><mo>(</mo><mi>F</mi><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>,</mo><mi>σ</mi><mo>)</mo></math></span>, where <span><math><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>f</mi><mo>∈</mo><mi>F</mi><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span> are known binary functions of <em>α</em>, <em>β</em>, and <em>α</em>, <em>β</em> are two algebraically independent transcendental elements, <em>σ</em> is a transformation that satisfies <span><math><mi>σ</mi><mo>(</mo><mi>α</mi><mo>)</mo><mo>=</mo><mi>β</mi></math></span>, <span><math><mi>σ</mi><mo>(</mo><mi>β</mi><mo>)</mo><mo>=</mo><mi>u</mi><mi>α</mi><mo>+</mo><mi>v</mi><mi>β</mi></math></span>, where <span><math><mi>u</mi><mo>,</mo><mi>v</mi><mo>≠</mo><mn>0</mn><mo>∈</mo><mi>F</mi></math></span>. Based on it, we then describe algorithms for finding the universal denominator for those equations in the bivariate difference field under certain assumptions. This reduces the general problem of finding the rational solutions of such equations to the problem of finding the polynomial solutions of such equations.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"124 ","pages":"Article 102308"},"PeriodicalIF":0.7,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139901497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tensor decompositions on simplicial complexes with invariance 具有不变性的简单复数上的张量分解
IF 0.7 4区 数学
Journal of Symbolic Computation Pub Date : 2024-01-19 DOI: 10.1016/j.jsc.2024.102299
Gemma De las Cuevas , Matt Hoogsteder Riera , Tim Netzer
{"title":"Tensor decompositions on simplicial complexes with invariance","authors":"Gemma De las Cuevas ,&nbsp;Matt Hoogsteder Riera ,&nbsp;Tim Netzer","doi":"10.1016/j.jsc.2024.102299","DOIUrl":"10.1016/j.jsc.2024.102299","url":null,"abstract":"<div><p><span>Tensors are ubiquitous in mathematics and the sciences, as they allow to store information in a concise way. Decompositions of tensors may give insights into their structure and complexity. In this work, we develop a new framework for decompositions of tensors, taking into account invariance, positivity and a geometric arrangement of their local spaces. We define an invariant decomposition with indices arranged on a simplicial complex which is explicitly invariant under a group action. We give a constructive proof that this decomposition exists for all invariant tensors, after possibly enriching the simplicial complex. We further define several decompositions certifying positivity, and prove similar existence results, as well as inequalities between the corresponding ranks. Our results generalize results from the theory of </span>tensor networks, used in the study of quantum many-body systems, for example.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"124 ","pages":"Article 102299"},"PeriodicalIF":0.7,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139497517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computing the binomial part of a polynomial ideal 计算多项式理想的二项式部分
IF 0.7 4区 数学
Journal of Symbolic Computation Pub Date : 2024-01-14 DOI: 10.1016/j.jsc.2024.102298
Martin Kreuzer, Florian Walsh
{"title":"Computing the binomial part of a polynomial ideal","authors":"Martin Kreuzer,&nbsp;Florian Walsh","doi":"10.1016/j.jsc.2024.102298","DOIUrl":"10.1016/j.jsc.2024.102298","url":null,"abstract":"<div><p>Given an ideal <em>I</em> in a polynomial ring <span><math><mi>K</mi><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></math></span> over a field <em>K</em>, we present a complete algorithm to compute the binomial part of <em>I</em>, i.e., the subideal <span><math><mrow><mi>Bin</mi></mrow><mo>(</mo><mi>I</mi><mo>)</mo></math></span> of <em>I</em> generated by all monomials and binomials in <em>I</em>. This is achieved step-by-step. First we collect and extend several algorithms for computing exponent lattices in different kinds of fields. Then we generalize them to compute exponent lattices of units in 0-dimensional <em>K</em>-algebras, where we have to generalize the computation of the separable part of an algebra to non-perfect fields in characteristic <em>p</em>. Next we examine the computation of unit lattices in finitely generated <em>K</em>-algebras, as well as their associated characters and lattice ideals. This allows us to calculate <span><math><mrow><mi>Bin</mi></mrow><mo>(</mo><mi>I</mi><mo>)</mo></math></span> when <em>I</em> is saturated with respect to the indeterminates by reducing the task to the 0-dimensional case. Finally, we treat the computation of <span><math><mrow><mi>Bin</mi></mrow><mo>(</mo><mi>I</mi><mo>)</mo></math></span> for general ideals by computing their cellular decomposition and dealing with finitely many special ideals called <span><math><mo>(</mo><mi>s</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span>-binomial parts. All algorithms have been implemented in <span>SageMath</span>.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"124 ","pages":"Article 102298"},"PeriodicalIF":0.7,"publicationDate":"2024-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0747717124000026/pdfft?md5=bc32bb62dcb12f7f2c1d113994ec49bf&pid=1-s2.0-S0747717124000026-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139462707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A post-quantum key exchange protocol from the intersection of conics 来自圆锥交点的后量子密钥交换协议
IF 0.7 4区 数学
Journal of Symbolic Computation Pub Date : 2024-01-05 DOI: 10.1016/j.jsc.2024.102297
Alberto Alzati, Daniele Di Tullio, Manoj Gyawali, Alfonso Tortora
{"title":"A post-quantum key exchange protocol from the intersection of conics","authors":"Alberto Alzati, Daniele Di Tullio, Manoj Gyawali, Alfonso Tortora","doi":"10.1016/j.jsc.2024.102297","DOIUrl":"https://doi.org/10.1016/j.jsc.2024.102297","url":null,"abstract":"<p>In this paper we present a key exchange protocol in which Alice and Bob have secret keys given by two conics embedded in a large ambient space by means of the Veronese embedding and public keys given by hyperplanes containing the embedded curves. Both of them construct some common invariants given by the intersection of two conics.</p>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"7 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139102670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An effective decomposition theorem for Schubert varieties 舒伯特变换的一个有效分解定理
IF 0.7 4区 数学
Journal of Symbolic Computation Pub Date : 2024-01-01 DOI: 10.1016/j.jsc.2023.102238
Francesca Cioffi, Davide Franco, Carmine Sessa
{"title":"An effective decomposition theorem for Schubert varieties","authors":"Francesca Cioffi,&nbsp;Davide Franco,&nbsp;Carmine Sessa","doi":"10.1016/j.jsc.2023.102238","DOIUrl":"https://doi.org/10.1016/j.jsc.2023.102238","url":null,"abstract":"","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"121 ","pages":"102238"},"PeriodicalIF":0.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49727688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信