Machine learning parameter systems, Noether normalisations and quasi-stable positions

IF 0.6 4区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Amir Hashemi , Mahshid Mirhashemi , Werner M. Seiler
{"title":"Machine learning parameter systems, Noether normalisations and quasi-stable positions","authors":"Amir Hashemi ,&nbsp;Mahshid Mirhashemi ,&nbsp;Werner M. Seiler","doi":"10.1016/j.jsc.2024.102345","DOIUrl":null,"url":null,"abstract":"<div><p>We discuss the use of machine learning models for finding “good coordinates” for polynomial ideals. Our main goal is to put ideals into quasi-stable position, as this generic position shares most properties of the generic initial ideal, but can be deterministically reached and verified. Furthermore, it entails a Noether normalisation and provides us with a system of parameters. Traditional approaches use either random choices which typically destroy all sparsity or rather simple human heuristics which are only moderately successful. Our experiments show that machine learning models provide us here with interesting alternatives that most of the time make nearly optimal choices.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"126 ","pages":"Article 102345"},"PeriodicalIF":0.6000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S074771712400049X/pdfft?md5=ecbd0dd906bdab6ee43183876959d620&pid=1-s2.0-S074771712400049X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S074771712400049X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

We discuss the use of machine learning models for finding “good coordinates” for polynomial ideals. Our main goal is to put ideals into quasi-stable position, as this generic position shares most properties of the generic initial ideal, but can be deterministically reached and verified. Furthermore, it entails a Noether normalisation and provides us with a system of parameters. Traditional approaches use either random choices which typically destroy all sparsity or rather simple human heuristics which are only moderately successful. Our experiments show that machine learning models provide us here with interesting alternatives that most of the time make nearly optimal choices.

机器学习参数系统、诺特归一化和准稳定位置
我们讨论使用机器学习模型为多项式理想寻找 "好坐标"。我们的主要目标是将理想置于准稳定位置,因为这种通用位置与通用初始理想的大多数属性相同,但可以确定地到达并验证。此外,它还包含诺特归一化,并为我们提供了一个参数系统。传统方法要么使用通常会破坏所有稀疏性的随机选择,要么使用相当简单的人类启发式方法,但都只能取得中等程度的成功。我们的实验表明,机器学习模型为我们提供了有趣的替代方案,在大多数情况下都能做出近乎最优的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Symbolic Computation
Journal of Symbolic Computation 工程技术-计算机:理论方法
CiteScore
2.10
自引率
14.30%
发文量
75
审稿时长
142 days
期刊介绍: An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects. It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信