麦克马洪分割分析 XV:奇偶性

IF 0.6 4区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
George E. Andrews , Peter Paule
{"title":"麦克马洪分割分析 XV:奇偶性","authors":"George E. Andrews ,&nbsp;Peter Paule","doi":"10.1016/j.jsc.2024.102351","DOIUrl":null,"url":null,"abstract":"<div><p>We apply the methods of partition analysis to partitions in which the parity of parts plays a role. We begin with an in-depth treatment of the generating function for the partitions from the first Göllnitz-Gordon identity. We then deduce a Schmidt-type theorem related to the false theta functions. We also consider: (1) position parity, (2) partitions with distinct even parts, (3) partitions with distinct odd parts. One of the corollaries of these last considerations is a new interpretation of Hei-Chi Chan's cubic partitions. A second part of our article is devoted to the algorithmic derivation of identities and arithmetic congruences related to the generating functions considered in part one, including cubic partitions. To this end, Smoot's implementation of Radu's Ramanujan-Kolberg algorithm is used. Finally, we give a short description which explains how to use the Omega package to derive special instances of the results of part one.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"127 ","pages":"Article 102351"},"PeriodicalIF":0.6000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0747717124000555/pdfft?md5=f2007103044731924521360849de8523&pid=1-s2.0-S0747717124000555-main.pdf","citationCount":"0","resultStr":"{\"title\":\"MacMahon's partition analysis XV: Parity\",\"authors\":\"George E. Andrews ,&nbsp;Peter Paule\",\"doi\":\"10.1016/j.jsc.2024.102351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We apply the methods of partition analysis to partitions in which the parity of parts plays a role. We begin with an in-depth treatment of the generating function for the partitions from the first Göllnitz-Gordon identity. We then deduce a Schmidt-type theorem related to the false theta functions. We also consider: (1) position parity, (2) partitions with distinct even parts, (3) partitions with distinct odd parts. One of the corollaries of these last considerations is a new interpretation of Hei-Chi Chan's cubic partitions. A second part of our article is devoted to the algorithmic derivation of identities and arithmetic congruences related to the generating functions considered in part one, including cubic partitions. To this end, Smoot's implementation of Radu's Ramanujan-Kolberg algorithm is used. Finally, we give a short description which explains how to use the Omega package to derive special instances of the results of part one.</p></div>\",\"PeriodicalId\":50031,\"journal\":{\"name\":\"Journal of Symbolic Computation\",\"volume\":\"127 \",\"pages\":\"Article 102351\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0747717124000555/pdfft?md5=f2007103044731924521360849de8523&pid=1-s2.0-S0747717124000555-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symbolic Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747717124000555\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717124000555","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

我们将分治分析的方法应用于各部分奇偶性起作用的分治。我们首先从第一个戈尔尼茨-戈登特性出发,对分区的生成函数进行深入处理。然后,我们推导出一个与假 Theta 函数相关的施密特型定理。我们还考虑了(1) 位置奇偶性,(2) 具有不同偶数部分的分区,(3) 具有不同奇数部分的分区。最后这些考虑的推论之一是对陈曦之立方分区的新解释。文章的第二部分专门讨论与第一部分所考虑的生成函数(包括立方分部)相关的同位和算术全等的算法推导。为此,我们使用了斯穆特对拉杜的拉马努扬-科尔伯格算法的实现。最后,我们将简要介绍如何使用 Omega 软件包推导出第一部分结果的特殊实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MacMahon's partition analysis XV: Parity

We apply the methods of partition analysis to partitions in which the parity of parts plays a role. We begin with an in-depth treatment of the generating function for the partitions from the first Göllnitz-Gordon identity. We then deduce a Schmidt-type theorem related to the false theta functions. We also consider: (1) position parity, (2) partitions with distinct even parts, (3) partitions with distinct odd parts. One of the corollaries of these last considerations is a new interpretation of Hei-Chi Chan's cubic partitions. A second part of our article is devoted to the algorithmic derivation of identities and arithmetic congruences related to the generating functions considered in part one, including cubic partitions. To this end, Smoot's implementation of Radu's Ramanujan-Kolberg algorithm is used. Finally, we give a short description which explains how to use the Omega package to derive special instances of the results of part one.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Symbolic Computation
Journal of Symbolic Computation 工程技术-计算机:理论方法
CiteScore
2.10
自引率
14.30%
发文量
75
审稿时长
142 days
期刊介绍: An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects. It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信