{"title":"Enumerating seating arrangements that obey social distancing","authors":"George Spahn, Doron Zeilberger","doi":"10.1016/j.jsc.2024.102344","DOIUrl":null,"url":null,"abstract":"<div><p>We illustrate the power of symbolic computation and experimental mathematics by investigating maximal seating arrangements, either on a line, or in a rectangular auditorium with a fixed number of columns but an arbitrary number of rows, that obey any prescribed set of ‘social distancing’ restrictions. In addition to enumeration, we study the statistical distribution of the density, and give simulation algorithms for generating them.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"126 ","pages":"Article 102344"},"PeriodicalIF":0.6000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0747717124000488/pdfft?md5=6a5aa36ac0cbbaa9177e66ebc47b5af0&pid=1-s2.0-S0747717124000488-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717124000488","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
We illustrate the power of symbolic computation and experimental mathematics by investigating maximal seating arrangements, either on a line, or in a rectangular auditorium with a fixed number of columns but an arbitrary number of rows, that obey any prescribed set of ‘social distancing’ restrictions. In addition to enumeration, we study the statistical distribution of the density, and give simulation algorithms for generating them.
期刊介绍:
An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects.
It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.