Dissimilar subalgebras of symmetry algebra of plasticity equations

IF 0.6 4区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Sergey I. Senashov , Alexander Yakhno
{"title":"Dissimilar subalgebras of symmetry algebra of plasticity equations","authors":"Sergey I. Senashov ,&nbsp;Alexander Yakhno","doi":"10.1016/j.jsc.2024.102358","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we construct the optimal sets of dissimilar subalgebras up to dimension three for the Lie algebra of point symmetries of the system of three-dimensional stationary equations of perfect plasticity with the Huber–von Mises yield condition. The obtained results can be used to solve the problem of determining all invariant solutions of this system. It was necessary to design algorithms to facilitate some steps of the classification of subalgebras. The computational algebraic system SageMath was chosen to implement these algorithms. The most used functions and procedures are listed. The developed algorithms can be adapted to classify subalgebras of higher dimensions.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"127 ","pages":"Article 102358"},"PeriodicalIF":0.6000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717124000622","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we construct the optimal sets of dissimilar subalgebras up to dimension three for the Lie algebra of point symmetries of the system of three-dimensional stationary equations of perfect plasticity with the Huber–von Mises yield condition. The obtained results can be used to solve the problem of determining all invariant solutions of this system. It was necessary to design algorithms to facilitate some steps of the classification of subalgebras. The computational algebraic system SageMath was chosen to implement these algorithms. The most used functions and procedures are listed. The developed algorithms can be adapted to classify subalgebras of higher dimensions.

塑性方程对称代数的异类子代数
在本文中,我们为具有胡贝尔-冯-米塞斯屈服条件的完全塑性三维静态方程系统的点对称性李代数构建了三维以内的最佳异或子代数集。所获得的结果可用于解决确定该系统所有不变解的问题。有必要设计算法来简化子代数分类的某些步骤。我们选择了计算代数系统 SageMath 来实现这些算法。其中列出了最常用的函数和程序。所开发的算法可用于更高维度的子代数分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Symbolic Computation
Journal of Symbolic Computation 工程技术-计算机:理论方法
CiteScore
2.10
自引率
14.30%
发文量
75
审稿时长
142 days
期刊介绍: An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects. It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信