{"title":"理想成员资格的简短证明","authors":"Clemens Hofstadler , Thibaut Verron","doi":"10.1016/j.jsc.2024.102325","DOIUrl":null,"url":null,"abstract":"<div><p>A cofactor representation of an ideal element, that is, a representation in terms of the generators, can be considered as a certificate for ideal membership. Such a representation is typically not unique, and some can be a lot more complicated than others. In this work, we consider the problem of computing sparsest cofactor representations, i.e., representations with a minimal number of terms, of a given element in a polynomial ideal. While we focus on the more general case of noncommutative polynomials, all results also apply to the commutative setting.</p><p>We show that the problem of computing cofactor representations with a bounded number of terms is decidable and <span><math><mtext>NP</mtext></math></span>-complete. Moreover, we provide a practical algorithm for computing sparse (not necessarily optimal) representations by translating the problem into a linear optimization problem and by exploiting properties of signature-based Gröbner basis algorithms. We show that, for a certain class of ideals, representations computed by this method are actually optimal, and we present experimental data illustrating that it can lead to noticeably sparser cofactor representations.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0747717124000294/pdfft?md5=fc06471a76a7e331737ea355a494162b&pid=1-s2.0-S0747717124000294-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Short proofs of ideal membership\",\"authors\":\"Clemens Hofstadler , Thibaut Verron\",\"doi\":\"10.1016/j.jsc.2024.102325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A cofactor representation of an ideal element, that is, a representation in terms of the generators, can be considered as a certificate for ideal membership. Such a representation is typically not unique, and some can be a lot more complicated than others. In this work, we consider the problem of computing sparsest cofactor representations, i.e., representations with a minimal number of terms, of a given element in a polynomial ideal. While we focus on the more general case of noncommutative polynomials, all results also apply to the commutative setting.</p><p>We show that the problem of computing cofactor representations with a bounded number of terms is decidable and <span><math><mtext>NP</mtext></math></span>-complete. Moreover, we provide a practical algorithm for computing sparse (not necessarily optimal) representations by translating the problem into a linear optimization problem and by exploiting properties of signature-based Gröbner basis algorithms. We show that, for a certain class of ideals, representations computed by this method are actually optimal, and we present experimental data illustrating that it can lead to noticeably sparser cofactor representations.</p></div>\",\"PeriodicalId\":50031,\"journal\":{\"name\":\"Journal of Symbolic Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0747717124000294/pdfft?md5=fc06471a76a7e331737ea355a494162b&pid=1-s2.0-S0747717124000294-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symbolic Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747717124000294\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717124000294","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
A cofactor representation of an ideal element, that is, a representation in terms of the generators, can be considered as a certificate for ideal membership. Such a representation is typically not unique, and some can be a lot more complicated than others. In this work, we consider the problem of computing sparsest cofactor representations, i.e., representations with a minimal number of terms, of a given element in a polynomial ideal. While we focus on the more general case of noncommutative polynomials, all results also apply to the commutative setting.
We show that the problem of computing cofactor representations with a bounded number of terms is decidable and -complete. Moreover, we provide a practical algorithm for computing sparse (not necessarily optimal) representations by translating the problem into a linear optimization problem and by exploiting properties of signature-based Gröbner basis algorithms. We show that, for a certain class of ideals, representations computed by this method are actually optimal, and we present experimental data illustrating that it can lead to noticeably sparser cofactor representations.
期刊介绍:
An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects.
It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.