用霍万斯基解方程

IF 0.6 4区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Barbara Betti , Marta Panizzut , Simon Telen
{"title":"用霍万斯基解方程","authors":"Barbara Betti ,&nbsp;Marta Panizzut ,&nbsp;Simon Telen","doi":"10.1016/j.jsc.2024.102340","DOIUrl":null,"url":null,"abstract":"<div><p>We develop a new eigenvalue method for solving structured polynomial equations over any field. The equations are defined on a projective algebraic variety which admits a rational parameterization by a Khovanskii basis, e.g., a Grassmannian in its Plücker embedding. This generalizes established algorithms for toric varieties, and introduces the effective use of Khovanskii bases in computer algebra. We investigate regularity questions and discuss several applications.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0747717124000440/pdfft?md5=9e6933be1fe9c296b695fd040a1b4944&pid=1-s2.0-S0747717124000440-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Solving equations using Khovanskii bases\",\"authors\":\"Barbara Betti ,&nbsp;Marta Panizzut ,&nbsp;Simon Telen\",\"doi\":\"10.1016/j.jsc.2024.102340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We develop a new eigenvalue method for solving structured polynomial equations over any field. The equations are defined on a projective algebraic variety which admits a rational parameterization by a Khovanskii basis, e.g., a Grassmannian in its Plücker embedding. This generalizes established algorithms for toric varieties, and introduces the effective use of Khovanskii bases in computer algebra. We investigate regularity questions and discuss several applications.</p></div>\",\"PeriodicalId\":50031,\"journal\":{\"name\":\"Journal of Symbolic Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0747717124000440/pdfft?md5=9e6933be1fe9c296b695fd040a1b4944&pid=1-s2.0-S0747717124000440-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symbolic Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747717124000440\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717124000440","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一种新的特征值方法,用于求解任意域上的结构多项式方程。这些方程定义在投影代数簇上,该代数簇可以通过 Khovanskii 基(例如普吕克嵌入中的格拉斯曼)进行有理参数化。这就概括了针对环状变体的既定算法,并在计算机代数中引入了霍万斯基的有效使用。我们研究了正则性问题,并讨论了几个应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving equations using Khovanskii bases

We develop a new eigenvalue method for solving structured polynomial equations over any field. The equations are defined on a projective algebraic variety which admits a rational parameterization by a Khovanskii basis, e.g., a Grassmannian in its Plücker embedding. This generalizes established algorithms for toric varieties, and introduces the effective use of Khovanskii bases in computer algebra. We investigate regularity questions and discuss several applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Symbolic Computation
Journal of Symbolic Computation 工程技术-计算机:理论方法
CiteScore
2.10
自引率
14.30%
发文量
75
审稿时长
142 days
期刊介绍: An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects. It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信