{"title":"用霍万斯基解方程","authors":"Barbara Betti , Marta Panizzut , Simon Telen","doi":"10.1016/j.jsc.2024.102340","DOIUrl":null,"url":null,"abstract":"<div><p>We develop a new eigenvalue method for solving structured polynomial equations over any field. The equations are defined on a projective algebraic variety which admits a rational parameterization by a Khovanskii basis, e.g., a Grassmannian in its Plücker embedding. This generalizes established algorithms for toric varieties, and introduces the effective use of Khovanskii bases in computer algebra. We investigate regularity questions and discuss several applications.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0747717124000440/pdfft?md5=9e6933be1fe9c296b695fd040a1b4944&pid=1-s2.0-S0747717124000440-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Solving equations using Khovanskii bases\",\"authors\":\"Barbara Betti , Marta Panizzut , Simon Telen\",\"doi\":\"10.1016/j.jsc.2024.102340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We develop a new eigenvalue method for solving structured polynomial equations over any field. The equations are defined on a projective algebraic variety which admits a rational parameterization by a Khovanskii basis, e.g., a Grassmannian in its Plücker embedding. This generalizes established algorithms for toric varieties, and introduces the effective use of Khovanskii bases in computer algebra. We investigate regularity questions and discuss several applications.</p></div>\",\"PeriodicalId\":50031,\"journal\":{\"name\":\"Journal of Symbolic Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0747717124000440/pdfft?md5=9e6933be1fe9c296b695fd040a1b4944&pid=1-s2.0-S0747717124000440-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symbolic Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747717124000440\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717124000440","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
We develop a new eigenvalue method for solving structured polynomial equations over any field. The equations are defined on a projective algebraic variety which admits a rational parameterization by a Khovanskii basis, e.g., a Grassmannian in its Plücker embedding. This generalizes established algorithms for toric varieties, and introduces the effective use of Khovanskii bases in computer algebra. We investigate regularity questions and discuss several applications.
期刊介绍:
An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects.
It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.