{"title":"超几何型序列","authors":"Bertrand Teguia Tabuguia","doi":"10.1016/j.jsc.2024.102328","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce hypergeometric-type sequences. They are linear combinations of interlaced hypergeometric sequences (of arbitrary interlacements). We prove that they form a subring of the ring of holonomic sequences. An interesting family of sequences in this class are those defined by trigonometric functions with linear arguments in the index and <em>π</em>, such as Chebyshev polynomials, <span><math><msub><mrow><mo>(</mo><msup><mrow><mi>sin</mi></mrow><mrow><mn>2</mn></mrow></msup><mo></mo><mrow><mo>(</mo><mi>n</mi><mspace></mspace><mi>π</mi><mo>/</mo><mn>4</mn><mo>)</mo></mrow><mo>⋅</mo><mi>cos</mi><mo></mo><mrow><mo>(</mo><mi>n</mi><mspace></mspace><mi>π</mi><mo>/</mo><mn>6</mn><mo>)</mo></mrow><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msub></math></span>, and compositions like <span><math><msub><mrow><mo>(</mo><mi>sin</mi><mo></mo><mrow><mo>(</mo><mi>cos</mi><mo></mo><mo>(</mo><mi>n</mi><mi>π</mi><mo>/</mo><mn>3</mn><mo>)</mo><mi>π</mi><mo>)</mo></mrow><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msub></math></span>.</p><p>We describe an algorithm that computes a hypergeometric-type normal form of a given holonomic <em>n</em>th term whenever it exists. Our implementation enables us to generate several identities for terms defined via trigonometric functions.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0747717124000324/pdfft?md5=51632bbf215cfdc91e40412d4a4946e1&pid=1-s2.0-S0747717124000324-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Hypergeometric-type sequences\",\"authors\":\"Bertrand Teguia Tabuguia\",\"doi\":\"10.1016/j.jsc.2024.102328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce hypergeometric-type sequences. They are linear combinations of interlaced hypergeometric sequences (of arbitrary interlacements). We prove that they form a subring of the ring of holonomic sequences. An interesting family of sequences in this class are those defined by trigonometric functions with linear arguments in the index and <em>π</em>, such as Chebyshev polynomials, <span><math><msub><mrow><mo>(</mo><msup><mrow><mi>sin</mi></mrow><mrow><mn>2</mn></mrow></msup><mo></mo><mrow><mo>(</mo><mi>n</mi><mspace></mspace><mi>π</mi><mo>/</mo><mn>4</mn><mo>)</mo></mrow><mo>⋅</mo><mi>cos</mi><mo></mo><mrow><mo>(</mo><mi>n</mi><mspace></mspace><mi>π</mi><mo>/</mo><mn>6</mn><mo>)</mo></mrow><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msub></math></span>, and compositions like <span><math><msub><mrow><mo>(</mo><mi>sin</mi><mo></mo><mrow><mo>(</mo><mi>cos</mi><mo></mo><mo>(</mo><mi>n</mi><mi>π</mi><mo>/</mo><mn>3</mn><mo>)</mo><mi>π</mi><mo>)</mo></mrow><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msub></math></span>.</p><p>We describe an algorithm that computes a hypergeometric-type normal form of a given holonomic <em>n</em>th term whenever it exists. Our implementation enables us to generate several identities for terms defined via trigonometric functions.</p></div>\",\"PeriodicalId\":50031,\"journal\":{\"name\":\"Journal of Symbolic Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0747717124000324/pdfft?md5=51632bbf215cfdc91e40412d4a4946e1&pid=1-s2.0-S0747717124000324-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symbolic Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747717124000324\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717124000324","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
We introduce hypergeometric-type sequences. They are linear combinations of interlaced hypergeometric sequences (of arbitrary interlacements). We prove that they form a subring of the ring of holonomic sequences. An interesting family of sequences in this class are those defined by trigonometric functions with linear arguments in the index and π, such as Chebyshev polynomials, , and compositions like .
We describe an algorithm that computes a hypergeometric-type normal form of a given holonomic nth term whenever it exists. Our implementation enables us to generate several identities for terms defined via trigonometric functions.
期刊介绍:
An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects.
It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.