{"title":"创造性伸缩的子模块方法","authors":"Mark van Hoeij","doi":"10.1016/j.jsc.2024.102342","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes ideas to speed up the process of creative telescoping, particularly when the telescoper is reducible. One can interpret telescoping as computing an annihilator <span><math><mi>L</mi><mo>∈</mo><mi>D</mi></math></span> for an element <em>m</em> in a <em>D</em>-module <em>M</em>. The main idea in this paper is to look for submodules of <em>M</em>. If <em>N</em> is a non-trivial submodule of <em>M</em>, constructing the minimal annihilator <em>R</em> of the image of <em>m</em> in <span><math><mi>M</mi><mo>/</mo><mi>N</mi></math></span> gives a right-factor of <em>L</em> in <em>D</em>. Then <span><math><mi>L</mi><mo>=</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>′</mo></mrow></msup><mi>R</mi></math></span> where the left-factor <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> is the telescoper of <span><math><mi>R</mi><mo>(</mo><mi>m</mi><mo>)</mo><mo>∈</mo><mi>N</mi></math></span>. To expedite computing <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>, compute the action of <em>D</em> on a natural basis of <em>N</em>, then obtain <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> with a cyclic vector computation.</p><p>The next main idea is to construct submodules from automorphisms, if we can find some. An automorphism with distinct eigenvalues can be used to decompose <em>N</em> as a direct sum <span><math><msub><mrow><mi>N</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⊕</mo><mo>⋯</mo><mo>⊕</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>. Then <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> is the LCLM (Least Common Left Multiple) of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> where <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is the telescoper of the projection of <span><math><mi>R</mi><mo>(</mo><mi>m</mi><mo>)</mo></math></span> on <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. An LCLM can greatly increase the degrees of coefficients, so <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> and <em>L</em> can be much larger expressions than the factors <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> and <em>R</em>. Examples show that computing each factor <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> and <em>R</em> separately can save a lot of CPU time compared to computing <em>L</em> in expanded form with standard creative telescoping.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Submodule approach to creative telescoping\",\"authors\":\"Mark van Hoeij\",\"doi\":\"10.1016/j.jsc.2024.102342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper proposes ideas to speed up the process of creative telescoping, particularly when the telescoper is reducible. One can interpret telescoping as computing an annihilator <span><math><mi>L</mi><mo>∈</mo><mi>D</mi></math></span> for an element <em>m</em> in a <em>D</em>-module <em>M</em>. The main idea in this paper is to look for submodules of <em>M</em>. If <em>N</em> is a non-trivial submodule of <em>M</em>, constructing the minimal annihilator <em>R</em> of the image of <em>m</em> in <span><math><mi>M</mi><mo>/</mo><mi>N</mi></math></span> gives a right-factor of <em>L</em> in <em>D</em>. Then <span><math><mi>L</mi><mo>=</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>′</mo></mrow></msup><mi>R</mi></math></span> where the left-factor <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> is the telescoper of <span><math><mi>R</mi><mo>(</mo><mi>m</mi><mo>)</mo><mo>∈</mo><mi>N</mi></math></span>. To expedite computing <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>, compute the action of <em>D</em> on a natural basis of <em>N</em>, then obtain <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> with a cyclic vector computation.</p><p>The next main idea is to construct submodules from automorphisms, if we can find some. An automorphism with distinct eigenvalues can be used to decompose <em>N</em> as a direct sum <span><math><msub><mrow><mi>N</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⊕</mo><mo>⋯</mo><mo>⊕</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>. Then <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> is the LCLM (Least Common Left Multiple) of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> where <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is the telescoper of the projection of <span><math><mi>R</mi><mo>(</mo><mi>m</mi><mo>)</mo></math></span> on <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. An LCLM can greatly increase the degrees of coefficients, so <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> and <em>L</em> can be much larger expressions than the factors <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> and <em>R</em>. Examples show that computing each factor <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> and <em>R</em> separately can save a lot of CPU time compared to computing <em>L</em> in expanded form with standard creative telescoping.</p></div>\",\"PeriodicalId\":50031,\"journal\":{\"name\":\"Journal of Symbolic Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symbolic Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747717124000464\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717124000464","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
摘要
本文提出了加快创造性伸缩过程的思路,尤其是当伸缩器是可还原的时候。本文的主要思路是寻找 M 的子模块。如果 N 是 M 的一个非琐子模块,那么构造 m 在 M/N 中的像的最小湮没器 R 就可以得到 L 在 D 中的右因子。为了加快 L′ 的计算速度,可以先计算 D 在 N 的自然基础上的作用,然后通过循环向量计算得到 L′。如果我们能找到一些自定形,那么下一个主要思路就是利用自定形构造子模子。具有不同特征值的自定形可以用来将 N 分解为直接和 N1⊕⋯⊕Nk。那么 L′ 就是 L1,...Lk 的 LCLM(最小公倍数),其中 Li 是 R(m) 在 Ni 上投影的望远镜。LCLM 可以大大增加系数的度数,因此 L′ 和 L 的表达式可以比 L1、...、Lk 和 R 的表达式大得多。实例表明,与用标准的创造性伸缩计算 L 的展开形式相比,单独计算每个系数 Li 和 R 可以节省大量的 CPU 时间。
This paper proposes ideas to speed up the process of creative telescoping, particularly when the telescoper is reducible. One can interpret telescoping as computing an annihilator for an element m in a D-module M. The main idea in this paper is to look for submodules of M. If N is a non-trivial submodule of M, constructing the minimal annihilator R of the image of m in gives a right-factor of L in D. Then where the left-factor is the telescoper of . To expedite computing , compute the action of D on a natural basis of N, then obtain with a cyclic vector computation.
The next main idea is to construct submodules from automorphisms, if we can find some. An automorphism with distinct eigenvalues can be used to decompose N as a direct sum . Then is the LCLM (Least Common Left Multiple) of where is the telescoper of the projection of on . An LCLM can greatly increase the degrees of coefficients, so and L can be much larger expressions than the factors and R. Examples show that computing each factor and R separately can save a lot of CPU time compared to computing L in expanded form with standard creative telescoping.
期刊介绍:
An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects.
It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.