Reduction-based creative telescoping for definite summation of D-finite functions

IF 0.6 4区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Hadrien Brochet, Bruno Salvy
{"title":"Reduction-based creative telescoping for definite summation of D-finite functions","authors":"Hadrien Brochet,&nbsp;Bruno Salvy","doi":"10.1016/j.jsc.2024.102329","DOIUrl":null,"url":null,"abstract":"<div><p>Creative telescoping is an algorithmic method initiated by Zeilberger to compute definite sums by synthesizing summands that telescope, called certificates. We describe a creative telescoping algorithm that computes telescopers for definite sums of D-finite functions as well as the associated certificates in a compact form. The algorithm relies on a discrete analogue of the generalized Hermite reduction, or equivalently, a generalization of the Abramov-Petkovšek reduction. We provide a Maple implementation with good timings on a variety of examples.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717124000336","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Creative telescoping is an algorithmic method initiated by Zeilberger to compute definite sums by synthesizing summands that telescope, called certificates. We describe a creative telescoping algorithm that computes telescopers for definite sums of D-finite functions as well as the associated certificates in a compact form. The algorithm relies on a discrete analogue of the generalized Hermite reduction, or equivalently, a generalization of the Abramov-Petkovšek reduction. We provide a Maple implementation with good timings on a variety of examples.

基于还原的 D 有限函数定和创造性伸缩
创造性伸缩是蔡尔伯格(Zeilberger)提出的一种算法方法,它通过合成能伸缩的和来计算定和,这些和被称为证书。我们描述了一种创造性的伸缩算法,它能以紧凑的形式计算 D 有限函数定和的伸缩器以及相关的证书。该算法依赖于广义赫米特还原法的离散类比,或者等价于阿布拉莫夫-佩特科夫舍克还原法的广义化。我们提供了一个 Maple 实现,在各种示例上都有很好的时效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Symbolic Computation
Journal of Symbolic Computation 工程技术-计算机:理论方法
CiteScore
2.10
自引率
14.30%
发文量
75
审稿时长
142 days
期刊介绍: An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects. It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信