{"title":"切比雪夫基多项式稀疏插值的早期终止","authors":"Erich L. Kaltofen , Zhi-Hong Yang","doi":"10.1016/j.jsc.2025.102507","DOIUrl":null,"url":null,"abstract":"<div><div>We show that the early termination algorithm in [Kaltofen and Lee, JSC, vol. 36, nr. 3–4, 2003] for interpolating a polynomial that is a linear combination of <em>t</em> Chebyshev polynomials of the first kind can be modified to use <span><math><mn>2</mn><mi>t</mi><mo>+</mo><mn>1</mn></math></span> randomized evaluation points; Kaltofen and Lee required <span><math><mn>2</mn><mi>t</mi><mo>+</mo><mn>2</mn></math></span> randomized evaluation points. Our variants work for scalar fields of any characteristic. The number <span><math><mn>2</mn><mi>t</mi><mo>+</mo><mn>1</mn></math></span> of evaluations matches that of the early termination version of the Prony sparse interpolation algorithm for the standard basis of powers of the variable [Kaltofen, Lee and Lobo, Proc. ISSAC 2000].</div><div>Our interpolation algorithm can compute the term locator polynomial in <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> field arithmetic operations while storing <span><math><mi>O</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> intermediate field elements by Heinig's Toeplitz solver with singular sections [Heinig and Rost, “Algebraic Methods for Toeplitz-like Matrices and Operators,” Birkhäuser, 1984]. We describe a slight modification for the Levinson-Durbin-Heinig algorithm that mirrors the Berlekamp-Massey algorithm for Hankel matrices.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"134 ","pages":"Article 102507"},"PeriodicalIF":1.1000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Early termination for sparse interpolation of polynomials in Chebyshev bases\",\"authors\":\"Erich L. Kaltofen , Zhi-Hong Yang\",\"doi\":\"10.1016/j.jsc.2025.102507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We show that the early termination algorithm in [Kaltofen and Lee, JSC, vol. 36, nr. 3–4, 2003] for interpolating a polynomial that is a linear combination of <em>t</em> Chebyshev polynomials of the first kind can be modified to use <span><math><mn>2</mn><mi>t</mi><mo>+</mo><mn>1</mn></math></span> randomized evaluation points; Kaltofen and Lee required <span><math><mn>2</mn><mi>t</mi><mo>+</mo><mn>2</mn></math></span> randomized evaluation points. Our variants work for scalar fields of any characteristic. The number <span><math><mn>2</mn><mi>t</mi><mo>+</mo><mn>1</mn></math></span> of evaluations matches that of the early termination version of the Prony sparse interpolation algorithm for the standard basis of powers of the variable [Kaltofen, Lee and Lobo, Proc. ISSAC 2000].</div><div>Our interpolation algorithm can compute the term locator polynomial in <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> field arithmetic operations while storing <span><math><mi>O</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> intermediate field elements by Heinig's Toeplitz solver with singular sections [Heinig and Rost, “Algebraic Methods for Toeplitz-like Matrices and Operators,” Birkhäuser, 1984]. We describe a slight modification for the Levinson-Durbin-Heinig algorithm that mirrors the Berlekamp-Massey algorithm for Hankel matrices.</div></div>\",\"PeriodicalId\":50031,\"journal\":{\"name\":\"Journal of Symbolic Computation\",\"volume\":\"134 \",\"pages\":\"Article 102507\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symbolic Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747717125000896\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717125000896","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
摘要
我们证明了[Kaltofen and Lee, JSC, vol. 36, nr. 3-4, 2003]中用于插值t个第一类Chebyshev多项式线性组合的早期终止算法可以修改为使用2t+1个随机评价点;Kaltofen和Lee需要2t+2个随机评价点。我们的变体适用于任何特征的标量场。2t+1次评估的次数与变量幂标准基的proony稀疏插值算法的早期终止版本相匹配[Kaltofen, Lee和Lobo, Proc. ISSAC 2000]。我们的插值算法可以在O(t2)个字段算术运算中计算项定位多项式,同时通过Heinig的Toeplitz求解器存储O(t)个中间字段元素,具有奇异部分[Heinig和Rost,“Toeplitz-类矩阵和算子的代数方法”Birkhäuser, 1984]。我们描述了对Levinson-Durbin-Heinig算法的轻微修改,该算法反映了Hankel矩阵的Berlekamp-Massey算法。
Early termination for sparse interpolation of polynomials in Chebyshev bases
We show that the early termination algorithm in [Kaltofen and Lee, JSC, vol. 36, nr. 3–4, 2003] for interpolating a polynomial that is a linear combination of t Chebyshev polynomials of the first kind can be modified to use randomized evaluation points; Kaltofen and Lee required randomized evaluation points. Our variants work for scalar fields of any characteristic. The number of evaluations matches that of the early termination version of the Prony sparse interpolation algorithm for the standard basis of powers of the variable [Kaltofen, Lee and Lobo, Proc. ISSAC 2000].
Our interpolation algorithm can compute the term locator polynomial in field arithmetic operations while storing intermediate field elements by Heinig's Toeplitz solver with singular sections [Heinig and Rost, “Algebraic Methods for Toeplitz-like Matrices and Operators,” Birkhäuser, 1984]. We describe a slight modification for the Levinson-Durbin-Heinig algorithm that mirrors the Berlekamp-Massey algorithm for Hankel matrices.
期刊介绍:
An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects.
It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.