切比雪夫基多项式稀疏插值的早期终止

IF 1.1 4区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Erich L. Kaltofen , Zhi-Hong Yang
{"title":"切比雪夫基多项式稀疏插值的早期终止","authors":"Erich L. Kaltofen ,&nbsp;Zhi-Hong Yang","doi":"10.1016/j.jsc.2025.102507","DOIUrl":null,"url":null,"abstract":"<div><div>We show that the early termination algorithm in [Kaltofen and Lee, JSC, vol. 36, nr. 3–4, 2003] for interpolating a polynomial that is a linear combination of <em>t</em> Chebyshev polynomials of the first kind can be modified to use <span><math><mn>2</mn><mi>t</mi><mo>+</mo><mn>1</mn></math></span> randomized evaluation points; Kaltofen and Lee required <span><math><mn>2</mn><mi>t</mi><mo>+</mo><mn>2</mn></math></span> randomized evaluation points. Our variants work for scalar fields of any characteristic. The number <span><math><mn>2</mn><mi>t</mi><mo>+</mo><mn>1</mn></math></span> of evaluations matches that of the early termination version of the Prony sparse interpolation algorithm for the standard basis of powers of the variable [Kaltofen, Lee and Lobo, Proc. ISSAC 2000].</div><div>Our interpolation algorithm can compute the term locator polynomial in <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> field arithmetic operations while storing <span><math><mi>O</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> intermediate field elements by Heinig's Toeplitz solver with singular sections [Heinig and Rost, “Algebraic Methods for Toeplitz-like Matrices and Operators,” Birkhäuser, 1984]. We describe a slight modification for the Levinson-Durbin-Heinig algorithm that mirrors the Berlekamp-Massey algorithm for Hankel matrices.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"134 ","pages":"Article 102507"},"PeriodicalIF":1.1000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Early termination for sparse interpolation of polynomials in Chebyshev bases\",\"authors\":\"Erich L. Kaltofen ,&nbsp;Zhi-Hong Yang\",\"doi\":\"10.1016/j.jsc.2025.102507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We show that the early termination algorithm in [Kaltofen and Lee, JSC, vol. 36, nr. 3–4, 2003] for interpolating a polynomial that is a linear combination of <em>t</em> Chebyshev polynomials of the first kind can be modified to use <span><math><mn>2</mn><mi>t</mi><mo>+</mo><mn>1</mn></math></span> randomized evaluation points; Kaltofen and Lee required <span><math><mn>2</mn><mi>t</mi><mo>+</mo><mn>2</mn></math></span> randomized evaluation points. Our variants work for scalar fields of any characteristic. The number <span><math><mn>2</mn><mi>t</mi><mo>+</mo><mn>1</mn></math></span> of evaluations matches that of the early termination version of the Prony sparse interpolation algorithm for the standard basis of powers of the variable [Kaltofen, Lee and Lobo, Proc. ISSAC 2000].</div><div>Our interpolation algorithm can compute the term locator polynomial in <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> field arithmetic operations while storing <span><math><mi>O</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> intermediate field elements by Heinig's Toeplitz solver with singular sections [Heinig and Rost, “Algebraic Methods for Toeplitz-like Matrices and Operators,” Birkhäuser, 1984]. We describe a slight modification for the Levinson-Durbin-Heinig algorithm that mirrors the Berlekamp-Massey algorithm for Hankel matrices.</div></div>\",\"PeriodicalId\":50031,\"journal\":{\"name\":\"Journal of Symbolic Computation\",\"volume\":\"134 \",\"pages\":\"Article 102507\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symbolic Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747717125000896\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717125000896","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了[Kaltofen and Lee, JSC, vol. 36, nr. 3-4, 2003]中用于插值t个第一类Chebyshev多项式线性组合的早期终止算法可以修改为使用2t+1个随机评价点;Kaltofen和Lee需要2t+2个随机评价点。我们的变体适用于任何特征的标量场。2t+1次评估的次数与变量幂标准基的proony稀疏插值算法的早期终止版本相匹配[Kaltofen, Lee和Lobo, Proc. ISSAC 2000]。我们的插值算法可以在O(t2)个字段算术运算中计算项定位多项式,同时通过Heinig的Toeplitz求解器存储O(t)个中间字段元素,具有奇异部分[Heinig和Rost,“Toeplitz-类矩阵和算子的代数方法”Birkhäuser, 1984]。我们描述了对Levinson-Durbin-Heinig算法的轻微修改,该算法反映了Hankel矩阵的Berlekamp-Massey算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Early termination for sparse interpolation of polynomials in Chebyshev bases
We show that the early termination algorithm in [Kaltofen and Lee, JSC, vol. 36, nr. 3–4, 2003] for interpolating a polynomial that is a linear combination of t Chebyshev polynomials of the first kind can be modified to use 2t+1 randomized evaluation points; Kaltofen and Lee required 2t+2 randomized evaluation points. Our variants work for scalar fields of any characteristic. The number 2t+1 of evaluations matches that of the early termination version of the Prony sparse interpolation algorithm for the standard basis of powers of the variable [Kaltofen, Lee and Lobo, Proc. ISSAC 2000].
Our interpolation algorithm can compute the term locator polynomial in O(t2) field arithmetic operations while storing O(t) intermediate field elements by Heinig's Toeplitz solver with singular sections [Heinig and Rost, “Algebraic Methods for Toeplitz-like Matrices and Operators,” Birkhäuser, 1984]. We describe a slight modification for the Levinson-Durbin-Heinig algorithm that mirrors the Berlekamp-Massey algorithm for Hankel matrices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Symbolic Computation
Journal of Symbolic Computation 工程技术-计算机:理论方法
CiteScore
2.10
自引率
14.30%
发文量
75
审稿时长
142 days
期刊介绍: An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects. It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信