{"title":"关于多元对称埃尔米特插值的注记","authors":"Teresa Krick , Agnes Szanto","doi":"10.1016/j.jsc.2025.102505","DOIUrl":null,"url":null,"abstract":"<div><div>In this note we explicit the notion of Hermite interpolant of a multivariate symmetric polynomial, generalizing the notion of Lagrange interpolant to the case when there are roots coalescence, an extension of the results on the symmetric Hermite interpolation basis by M.-F. Roy and A. Szpirglas included in (<span><span>Roy and Szpirglas, 2020</span></span>).</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"134 ","pages":"Article 102505"},"PeriodicalIF":1.1000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on the multivariate symmetric Hermite interpolant\",\"authors\":\"Teresa Krick , Agnes Szanto\",\"doi\":\"10.1016/j.jsc.2025.102505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this note we explicit the notion of Hermite interpolant of a multivariate symmetric polynomial, generalizing the notion of Lagrange interpolant to the case when there are roots coalescence, an extension of the results on the symmetric Hermite interpolation basis by M.-F. Roy and A. Szpirglas included in (<span><span>Roy and Szpirglas, 2020</span></span>).</div></div>\",\"PeriodicalId\":50031,\"journal\":{\"name\":\"Journal of Symbolic Computation\",\"volume\":\"134 \",\"pages\":\"Article 102505\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symbolic Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747717125000872\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717125000872","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
摘要
本文给出了多元对称多项式的Hermite插值的概念,将Lagrange插值的概念推广到有根合并的情况,并在对称Hermite插值的基础上推广了m - f。(Roy and Szpirglas, 2020)。
A note on the multivariate symmetric Hermite interpolant
In this note we explicit the notion of Hermite interpolant of a multivariate symmetric polynomial, generalizing the notion of Lagrange interpolant to the case when there are roots coalescence, an extension of the results on the symmetric Hermite interpolation basis by M.-F. Roy and A. Szpirglas included in (Roy and Szpirglas, 2020).
期刊介绍:
An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects.
It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.