{"title":"升级Castelnuovo-Mumford规则和Gröbner基地","authors":"Matías Bender , Laurent Busé , Carles Checa , Elias Tsigaridas","doi":"10.1016/j.jsc.2025.102487","DOIUrl":null,"url":null,"abstract":"<div><div>We study the relation between the bigraded Castelnuovo-Mumford regularity of a bihomogeneous ideal <em>I</em> in the coordinate ring of the product of two projective spaces and the bidegrees of a Gröbner basis of <em>I</em> with respect to the degree reverse lexicographical monomial order in generic coordinates. For the single-graded case, Bayer and Stillman unraveled all aspects of this relationship forty years ago and these results led to complexity estimates for computations with Gröbner bases. We build on this work to introduce a bounding region of the bidegrees of minimal generators of bihomogeneous Gröbner bases for <em>I</em>. We also use this region to certify the presence of some minimal generators close to its boundary. Finally, we show that, up to a certain shift, this region is related to the bigraded Castelnuovo-Mumford regularity of <em>I</em>.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"133 ","pages":"Article 102487"},"PeriodicalIF":1.1000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bigraded Castelnuovo-Mumford regularity and Gröbner bases\",\"authors\":\"Matías Bender , Laurent Busé , Carles Checa , Elias Tsigaridas\",\"doi\":\"10.1016/j.jsc.2025.102487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the relation between the bigraded Castelnuovo-Mumford regularity of a bihomogeneous ideal <em>I</em> in the coordinate ring of the product of two projective spaces and the bidegrees of a Gröbner basis of <em>I</em> with respect to the degree reverse lexicographical monomial order in generic coordinates. For the single-graded case, Bayer and Stillman unraveled all aspects of this relationship forty years ago and these results led to complexity estimates for computations with Gröbner bases. We build on this work to introduce a bounding region of the bidegrees of minimal generators of bihomogeneous Gröbner bases for <em>I</em>. We also use this region to certify the presence of some minimal generators close to its boundary. Finally, we show that, up to a certain shift, this region is related to the bigraded Castelnuovo-Mumford regularity of <em>I</em>.</div></div>\",\"PeriodicalId\":50031,\"journal\":{\"name\":\"Journal of Symbolic Computation\",\"volume\":\"133 \",\"pages\":\"Article 102487\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symbolic Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747717125000690\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717125000690","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Bigraded Castelnuovo-Mumford regularity and Gröbner bases
We study the relation between the bigraded Castelnuovo-Mumford regularity of a bihomogeneous ideal I in the coordinate ring of the product of two projective spaces and the bidegrees of a Gröbner basis of I with respect to the degree reverse lexicographical monomial order in generic coordinates. For the single-graded case, Bayer and Stillman unraveled all aspects of this relationship forty years ago and these results led to complexity estimates for computations with Gröbner bases. We build on this work to introduce a bounding region of the bidegrees of minimal generators of bihomogeneous Gröbner bases for I. We also use this region to certify the presence of some minimal generators close to its boundary. Finally, we show that, up to a certain shift, this region is related to the bigraded Castelnuovo-Mumford regularity of I.
期刊介绍:
An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects.
It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.