{"title":"用于正常锥体计算的量词消除","authors":"Michael Mandlmayr , Ali K. Uncu","doi":"10.1016/j.jsc.2025.102456","DOIUrl":null,"url":null,"abstract":"<div><div>We present effective procedures to calculate regular normal cones and other related objects using quantifier elimination. This method of normal cone calculations is complementary to computing Lagrangians and it works best at points where the constraint qualifications fail and extra work for other methods becomes inevitable. This method also serves as a tool to calculate the regular co-derivative for semismooth* Newton methods. We list algorithms and their demonstrations of different use cases for this approach.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"131 ","pages":"Article 102456"},"PeriodicalIF":0.6000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifier elimination for normal cone computations\",\"authors\":\"Michael Mandlmayr , Ali K. Uncu\",\"doi\":\"10.1016/j.jsc.2025.102456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present effective procedures to calculate regular normal cones and other related objects using quantifier elimination. This method of normal cone calculations is complementary to computing Lagrangians and it works best at points where the constraint qualifications fail and extra work for other methods becomes inevitable. This method also serves as a tool to calculate the regular co-derivative for semismooth* Newton methods. We list algorithms and their demonstrations of different use cases for this approach.</div></div>\",\"PeriodicalId\":50031,\"journal\":{\"name\":\"Journal of Symbolic Computation\",\"volume\":\"131 \",\"pages\":\"Article 102456\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symbolic Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747717125000380\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717125000380","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Quantifier elimination for normal cone computations
We present effective procedures to calculate regular normal cones and other related objects using quantifier elimination. This method of normal cone calculations is complementary to computing Lagrangians and it works best at points where the constraint qualifications fail and extra work for other methods becomes inevitable. This method also serves as a tool to calculate the regular co-derivative for semismooth* Newton methods. We list algorithms and their demonstrations of different use cases for this approach.
期刊介绍:
An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects.
It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.