反高斯分布和伽马分布的矩变化是无缺陷的

IF 0.6 4区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Oskar Henriksson , Kristian Ranestad , Lisa Seccia , Teresa Yu
{"title":"反高斯分布和伽马分布的矩变化是无缺陷的","authors":"Oskar Henriksson ,&nbsp;Kristian Ranestad ,&nbsp;Lisa Seccia ,&nbsp;Teresa Yu","doi":"10.1016/j.jsc.2025.102460","DOIUrl":null,"url":null,"abstract":"<div><div>We show that the parameters of a <em>k</em>-mixture of inverse Gaussian or gamma distributions are algebraically identifiable from the first <span><math><mn>3</mn><mi>k</mi><mo>−</mo><mn>1</mn></math></span> moments, and rationally identifiable from the first <span><math><mn>3</mn><mi>k</mi><mo>+</mo><mn>2</mn></math></span> moments. Our proofs are based on Terracini's classification of defective surfaces, careful analysis of the intersection theory of moment varieties, and a recent result on sufficient conditions for rational identifiability of secant varieties by Massarenti–Mella.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"132 ","pages":"Article 102460"},"PeriodicalIF":0.6000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moment varieties of the inverse Gaussian and gamma distributions are nondefective\",\"authors\":\"Oskar Henriksson ,&nbsp;Kristian Ranestad ,&nbsp;Lisa Seccia ,&nbsp;Teresa Yu\",\"doi\":\"10.1016/j.jsc.2025.102460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We show that the parameters of a <em>k</em>-mixture of inverse Gaussian or gamma distributions are algebraically identifiable from the first <span><math><mn>3</mn><mi>k</mi><mo>−</mo><mn>1</mn></math></span> moments, and rationally identifiable from the first <span><math><mn>3</mn><mi>k</mi><mo>+</mo><mn>2</mn></math></span> moments. Our proofs are based on Terracini's classification of defective surfaces, careful analysis of the intersection theory of moment varieties, and a recent result on sufficient conditions for rational identifiability of secant varieties by Massarenti–Mella.</div></div>\",\"PeriodicalId\":50031,\"journal\":{\"name\":\"Journal of Symbolic Computation\",\"volume\":\"132 \",\"pages\":\"Article 102460\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symbolic Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747717125000422\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717125000422","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了逆高斯分布或反伽马分布的k-混合物的参数在前3k−1阶矩上是代数可识别的,并且在前3k+2阶矩上是理性可识别的。我们的证明是基于Terracini对缺陷曲面的分类,对矩变的交理论的仔细分析,以及最近由Massarenti-Mella关于割线变的有理可辨识的充分条件的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moment varieties of the inverse Gaussian and gamma distributions are nondefective
We show that the parameters of a k-mixture of inverse Gaussian or gamma distributions are algebraically identifiable from the first 3k1 moments, and rationally identifiable from the first 3k+2 moments. Our proofs are based on Terracini's classification of defective surfaces, careful analysis of the intersection theory of moment varieties, and a recent result on sufficient conditions for rational identifiability of secant varieties by Massarenti–Mella.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Symbolic Computation
Journal of Symbolic Computation 工程技术-计算机:理论方法
CiteScore
2.10
自引率
14.30%
发文量
75
审稿时长
142 days
期刊介绍: An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects. It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信