{"title":"等维分解的协同方法","authors":"Rafael Mohr","doi":"10.1016/j.jsc.2025.102455","DOIUrl":null,"url":null,"abstract":"<div><div>Based on a theorem by Vasconcelos, we give an algorithm for equidimensional decomposition of algebraic sets using syzygy computations via Gröbner bases. This algorithm avoids the use of elimination, homological algebra and processing the input equations one-by-one present in previous algorithms. We experimentally demonstrate the practical interest of our algorithm compared to the state of the art.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"131 ","pages":"Article 102455"},"PeriodicalIF":0.6000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A syzygial method for equidimensional decomposition\",\"authors\":\"Rafael Mohr\",\"doi\":\"10.1016/j.jsc.2025.102455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Based on a theorem by Vasconcelos, we give an algorithm for equidimensional decomposition of algebraic sets using syzygy computations via Gröbner bases. This algorithm avoids the use of elimination, homological algebra and processing the input equations one-by-one present in previous algorithms. We experimentally demonstrate the practical interest of our algorithm compared to the state of the art.</div></div>\",\"PeriodicalId\":50031,\"journal\":{\"name\":\"Journal of Symbolic Computation\",\"volume\":\"131 \",\"pages\":\"Article 102455\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symbolic Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747717125000379\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717125000379","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
A syzygial method for equidimensional decomposition
Based on a theorem by Vasconcelos, we give an algorithm for equidimensional decomposition of algebraic sets using syzygy computations via Gröbner bases. This algorithm avoids the use of elimination, homological algebra and processing the input equations one-by-one present in previous algorithms. We experimentally demonstrate the practical interest of our algorithm compared to the state of the art.
期刊介绍:
An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects.
It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.