Linear preservers of secant varieties and other varieties of tensors

IF 0.6 4区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Fulvio Gesmundo , Young In Han , Benjamin Lovitz
{"title":"Linear preservers of secant varieties and other varieties of tensors","authors":"Fulvio Gesmundo ,&nbsp;Young In Han ,&nbsp;Benjamin Lovitz","doi":"10.1016/j.jsc.2025.102449","DOIUrl":null,"url":null,"abstract":"<div><div>We study the problem of characterizing linear preserver subgroups of algebraic varieties, with a particular emphasis on secant varieties and other varieties of tensors. We introduce a number of techniques built on different geometric properties of the varieties of interest. Our main result is a simple characterization of the linear preservers of secant varieties of Segre varieties in many cases, including <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><msup><mrow><mo>(</mo><msup><mrow><mi>P</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mrow><mo>×</mo><mi>k</mi></mrow></msup><mo>)</mo></math></span> for all <span><math><mi>r</mi><mo>≤</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>⌊</mo><mi>k</mi><mo>/</mo><mn>2</mn><mo>⌋</mo></mrow></msup></math></span>. We also characterize the linear preservers of several other sets of tensors, including subspace varieties, the variety of slice rank one tensors, symmetric tensors of bounded Waring rank, the variety of biseparable tensors, and hyperdeterminantal surfaces. Computational techniques and applications in quantum information theory are discussed. We provide geometric proofs for several previously known results on linear preservers.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"131 ","pages":"Article 102449"},"PeriodicalIF":0.6000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717125000318","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the problem of characterizing linear preserver subgroups of algebraic varieties, with a particular emphasis on secant varieties and other varieties of tensors. We introduce a number of techniques built on different geometric properties of the varieties of interest. Our main result is a simple characterization of the linear preservers of secant varieties of Segre varieties in many cases, including σr((Pn1)×k) for all rnk/2. We also characterize the linear preservers of several other sets of tensors, including subspace varieties, the variety of slice rank one tensors, symmetric tensors of bounded Waring rank, the variety of biseparable tensors, and hyperdeterminantal surfaces. Computational techniques and applications in quantum information theory are discussed. We provide geometric proofs for several previously known results on linear preservers.
割线变体和其他变体张量的线性保持器
我们研究了代数变量的线性保持子群的刻画问题,特别强调了割线变量和其他张量的变量。我们介绍了一些建立在不同几何性质基础上的技术。我们的主要结果是对许多情况下secgre的割线型的线性保持器的一个简单刻画,包括对所有r≤n⌊k/2⌋的σr((Pn−1)×k)。我们还刻画了其他几种张量集合的线性保持器,包括子空间变量、片秩1张量的变量、有界Waring秩的对称张量、可分张量的变量和超确定曲面。讨论了量子信息理论中的计算技术及其应用。我们提供了几个已知的线性保持器的几何证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Symbolic Computation
Journal of Symbolic Computation 工程技术-计算机:理论方法
CiteScore
2.10
自引率
14.30%
发文量
75
审稿时长
142 days
期刊介绍: An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects. It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信