Journal of Symplectic Geometry最新文献

筛选
英文 中文
Non-degeneracy of the Hofer norm for Poisson structures 泊松结构的Hofer范数的非简并性
IF 0.7 3区 数学
Journal of Symplectic Geometry Pub Date : 2018-09-27 DOI: 10.4310/jsg.2021.v19.n5.a3
Duvsan Joksimovi'c, I. Marcut
{"title":"Non-degeneracy of the Hofer norm for Poisson structures","authors":"Duvsan Joksimovi'c, I. Marcut","doi":"10.4310/jsg.2021.v19.n5.a3","DOIUrl":"https://doi.org/10.4310/jsg.2021.v19.n5.a3","url":null,"abstract":"We remark that, as in the symplectic case, the Hofer norm on the Hamiltonian group of a Poisson manifold is non-degenerate. The proof is a straightforward application of tools from symplectic topology.","PeriodicalId":50029,"journal":{"name":"Journal of Symplectic Geometry","volume":"12 15 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2018-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90174477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Noncontractible loops of symplectic embeddings between convex toric domains 凸环域间辛嵌入的不可收缩环
IF 0.7 3区 数学
Journal of Symplectic Geometry Pub Date : 2018-09-11 DOI: 10.4310/jsg.2020.v18.n4.a8
M. Munteanu
{"title":"Noncontractible loops of symplectic embeddings between convex toric domains","authors":"M. Munteanu","doi":"10.4310/jsg.2020.v18.n4.a8","DOIUrl":"https://doi.org/10.4310/jsg.2020.v18.n4.a8","url":null,"abstract":"Given two 4-dimensional ellipsoids whose symplectic sizes satisfy a specified inequality, we prove that a certain loop of symplectic embeddings between the two ellipsoids is noncontractible. The statement about symplectic ellipsoids is a particular case of a more general result. Given two convex toric domains whose first and second ECH capacities satisfy a specified inequality, we prove that a certain loop of symplectic embeddings between the two convex toric domains is noncontractible. We show how the constructed loops become contractible if the target domain becomes large enough. The proof involves studying certain moduli spaces of holomorphic cylinders in families of symplectic cobordisms arising from families of symplectic embeddings.","PeriodicalId":50029,"journal":{"name":"Journal of Symplectic Geometry","volume":"2 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2018-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77295833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Concentration of symplectic volumes on Poisson homogeneous spaces 泊松齐次空间上辛体积的浓度
IF 0.7 3区 数学
Journal of Symplectic Geometry Pub Date : 2018-08-21 DOI: 10.4310/JSG.2020.v18.n5.a1
A. Alekseev, Benjamin Hoffman, J. Lane, Yanpeng Li
{"title":"Concentration of symplectic volumes on Poisson homogeneous spaces","authors":"A. Alekseev, Benjamin Hoffman, J. Lane, Yanpeng Li","doi":"10.4310/JSG.2020.v18.n5.a1","DOIUrl":"https://doi.org/10.4310/JSG.2020.v18.n5.a1","url":null,"abstract":"For a compact Poisson-Lie group $K$, the homogeneous space $K/T$ carries a family of symplectic forms $omega_xi^s$, where $xi in mathfrak{t}^*_+$ is in the positive Weyl chamber and $s in mathbb{R}$. The symplectic form $omega_xi^0$ is identified with the natural $K$-invariant symplectic form on the $K$ coadjoint orbit corresponding to $xi$. The cohomology class of $omega_xi^s$ is independent of $s$ for a fixed value of $xi$. \u0000In this paper, we show that as $sto -infty$, the symplectic volume of $omega_xi^s$ concentrates in arbitrarily small neighbourhoods of the smallest Schubert cell in $K/T cong G/B$. This strengthens earlier results [9,10] and is a step towards a conjectured construction of global action-angle coordinates on $Lie(K)^*$ [4, Conjecture 1.1].","PeriodicalId":50029,"journal":{"name":"Journal of Symplectic Geometry","volume":"22 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2018-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80491484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
H-principles for regular Lagrangians 正则拉格朗日量的h原理
IF 0.7 3区 数学
Journal of Symplectic Geometry Pub Date : 2018-08-17 DOI: 10.4310/jsg.2020.v18.n4.a4
Oleg Lazarev
{"title":"H-principles for regular Lagrangians","authors":"Oleg Lazarev","doi":"10.4310/jsg.2020.v18.n4.a4","DOIUrl":"https://doi.org/10.4310/jsg.2020.v18.n4.a4","url":null,"abstract":"We prove an existence h-principle for regular Lagrangians with Legendrian boundary in arbitrary Weinstein domains of dimension at least six; this extends a previous result of Eliashberg, Ganatra, and the author for Lagrangians in flexible domains. Furthermore, we show that all regular Lagrangians come from our construction and describe some related decomposition results. We also prove a regular version of Eliashberg and Murphy's h-principle for Lagrangian caps with loose negative end. As an application, we give a new construction of infinitely many regular Lagrangian disks in the standard Weinstein ball.","PeriodicalId":50029,"journal":{"name":"Journal of Symplectic Geometry","volume":"647 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2018-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85364694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Iso-contact embeddings of manifolds in co-dimension $2$ 协维流形的等接触嵌入
IF 0.7 3区 数学
Journal of Symplectic Geometry Pub Date : 2018-08-13 DOI: 10.4310/jsg.2022.v20.n2.a3
Dishant M. Pancholi, Suhas Pandit
{"title":"Iso-contact embeddings of manifolds in co-dimension $2$","authors":"Dishant M. Pancholi, Suhas Pandit","doi":"10.4310/jsg.2022.v20.n2.a3","DOIUrl":"https://doi.org/10.4310/jsg.2022.v20.n2.a3","url":null,"abstract":"The purpose of this article is to study co-dimension $2$ iso-contact embeddings of closed contact manifolds. We first show that a closed contact manifold $(M^{2n-1}, xi_M)$ iso-contact embeds in a contact manifold $(N^{2n+1}, xi_N),$ provided $M$ contact embeds in $(N, xi_N)$ with a trivial normal bundle and the contact structure induced on $M$ via this embedding is homotopic as an almost-contact structure to $xi_M.$ We apply this result to first establish that a closed contact $3$--manifold having no $2$--torsion in its second integral cohomology iso-contact embeds in the standard contact $5$--sphere if and only if the first Chern class of the contact structure is zero. Finally, we discuss iso-contact embeddings of closed simply connected contact $5$--manifolds.","PeriodicalId":50029,"journal":{"name":"Journal of Symplectic Geometry","volume":"1 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2018-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73371247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Positive topological entropy of positive contactomorphisms 正接触形态的正拓扑熵
IF 0.7 3区 数学
Journal of Symplectic Geometry Pub Date : 2018-06-30 DOI: 10.4310/jsg.2020.v18.n3.a3
Lucas Dahinden
{"title":"Positive topological entropy of positive contactomorphisms","authors":"Lucas Dahinden","doi":"10.4310/jsg.2020.v18.n3.a3","DOIUrl":"https://doi.org/10.4310/jsg.2020.v18.n3.a3","url":null,"abstract":"A positive contactomorphism of a contact manifold $M$ is the end point of a contact isotopy on $M$ that is always positively transverse to the contact structure. Assume that $M$ contains a Legendrian sphere $Lambda$, and that $(M,Lambda)$ is fillable by a Liouville domain $(W,omega)$ with exact Lagrangian $L$ such that $omega|_{pi_2(W,L)}=0$. We show that if the exponential growth of the action filtered wrapped Floer homology of $(W,L)$ is positive, then every positive contactomorphism of $M$ has positive topological entropy. This result generalizes the result of Alves and Meiwes from Reeb flows to positive contactomorphisms, and it yields many examples of contact manifolds on which every positive contactomorphism has positive topological entropy, among them the exotic contact spheres found by Alves and Meiwes. \u0000A main step in the proof is to show that wrapped Floer homology is isomorphic to the positive part of Lagrangian Rabinowitz-Floer homology.","PeriodicalId":50029,"journal":{"name":"Journal of Symplectic Geometry","volume":"9 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2018-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84795003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
On linking of Lagrangian tori in $mathbb{R}^4$ 关于拉格朗日环面在$mathbb{R}^4$中的连接
IF 0.7 3区 数学
Journal of Symplectic Geometry Pub Date : 2018-06-20 DOI: 10.4310/jsg.2020.v18.n2.a3
Laurent Cot'e
{"title":"On linking of Lagrangian tori in $mathbb{R}^4$","authors":"Laurent Cot'e","doi":"10.4310/jsg.2020.v18.n2.a3","DOIUrl":"https://doi.org/10.4310/jsg.2020.v18.n2.a3","url":null,"abstract":"We prove some results about linking of Lagrangian tori in the symplectic vector space $(mathbb{R}^4, omega)$. We show that certain enumerative counts of holomophic disks give useful information about linking. This enables us to prove, for example, that any two Clifford tori are unlinked in a strong sense. We extend work of Dimitroglou Rizell and Evans on linking of monotone Lagrangian tori to a class of non-monotone tori in $mathbb{R}^4$ and also strengthen their conclusions in the monotone case in $mathbb{R}^4$.","PeriodicalId":50029,"journal":{"name":"Journal of Symplectic Geometry","volume":"111 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2018-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88060285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Almost-Kähler smoothings of compact complex surfaces with $A_1$ singularities 具有$A_1$奇点的紧致复曲面的Almost-Kähler光滑性
IF 0.7 3区 数学
Journal of Symplectic Geometry Pub Date : 2018-06-20 DOI: 10.4310/jsg.2020.v18.n5.a5
Caroline Vernier
{"title":"Almost-Kähler smoothings of compact complex surfaces with $A_1$ singularities","authors":"Caroline Vernier","doi":"10.4310/jsg.2020.v18.n5.a5","DOIUrl":"https://doi.org/10.4310/jsg.2020.v18.n5.a5","url":null,"abstract":"This paper is concerned with the existence of metrics of constant Hermitian scalar curvature on almost-Kahler manifolds obtained as smoothings of a constant scalar curvature Kahler orbifold, with A1 singularities. More precisely, given such an orbifold that does not admit nontrivial holomorphic vector fields, we show that an almost-Kahler smoothing (Me, ωe) admits an almost-Kahler structure (Je, ge) of constant Hermitian curvature. Moreover, we show that for e > 0 small enough, the (Me, ωe) are all symplectically equivalent to a fixed symplectic manifold (M , ω) in which there is a surface S homologous to a 2-sphere, such that [S] is a vanishing cycle that admits a representant that is Hamiltonian stationary for ge.","PeriodicalId":50029,"journal":{"name":"Journal of Symplectic Geometry","volume":"39 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2018-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77696488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A homotopical viewpoint at the Poisson bracket invariants for tuples of sets 集合元组泊松括号不变量的同调视点
IF 0.7 3区 数学
Journal of Symplectic Geometry Pub Date : 2018-06-17 DOI: 10.4310/jsg.2020.v18.n4.a2
Y. Ganor
{"title":"A homotopical viewpoint at the Poisson bracket invariants for tuples of sets","authors":"Y. Ganor","doi":"10.4310/jsg.2020.v18.n4.a2","DOIUrl":"https://doi.org/10.4310/jsg.2020.v18.n4.a2","url":null,"abstract":"We suggest a homotopical description of the Poisson bracket invariants for tuples of closed sets in symplectic manifolds. It implies that these invariants depend only on the union of the sets along with topological data.","PeriodicalId":50029,"journal":{"name":"Journal of Symplectic Geometry","volume":"9 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2018-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76753983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Complex analytic properties of minimal Lagrangian submanifolds 最小拉格朗日子流形的复解析性质
IF 0.7 3区 数学
Journal of Symplectic Geometry Pub Date : 2018-05-24 DOI: 10.4310/jsg.2020.v18.n4.a6
R. Maccheroni
{"title":"Complex analytic properties of minimal Lagrangian submanifolds","authors":"R. Maccheroni","doi":"10.4310/jsg.2020.v18.n4.a6","DOIUrl":"https://doi.org/10.4310/jsg.2020.v18.n4.a6","url":null,"abstract":"In this article we study complex properties of minimal Lagrangian submanifolds in Kaehler ambient spaces, and how they depend on the ambient curvature. In particular, we prove that, in the negative curvature case, minimal Lagrangians do not admit fillings by holomorphic discs. The proof relies on a mix of holomorphic curve techniques and on certain convexity results.","PeriodicalId":50029,"journal":{"name":"Journal of Symplectic Geometry","volume":"62 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2018-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73158464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信