Almost-Kähler smoothings of compact complex surfaces with $A_1$ singularities

Pub Date : 2018-06-20 DOI:10.4310/jsg.2020.v18.n5.a5
Caroline Vernier
{"title":"Almost-Kähler smoothings of compact complex surfaces with $A_1$ singularities","authors":"Caroline Vernier","doi":"10.4310/jsg.2020.v18.n5.a5","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the existence of metrics of constant Hermitian scalar curvature on almost-Kahler manifolds obtained as smoothings of a constant scalar curvature Kahler orbifold, with A1 singularities. More precisely, given such an orbifold that does not admit nontrivial holomorphic vector fields, we show that an almost-Kahler smoothing (Me, ωe) admits an almost-Kahler structure (Je, ge) of constant Hermitian curvature. Moreover, we show that for e > 0 small enough, the (Me, ωe) are all symplectically equivalent to a fixed symplectic manifold (M , ω) in which there is a surface S homologous to a 2-sphere, such that [S] is a vanishing cycle that admits a representant that is Hamiltonian stationary for ge.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2020.v18.n5.a5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper is concerned with the existence of metrics of constant Hermitian scalar curvature on almost-Kahler manifolds obtained as smoothings of a constant scalar curvature Kahler orbifold, with A1 singularities. More precisely, given such an orbifold that does not admit nontrivial holomorphic vector fields, we show that an almost-Kahler smoothing (Me, ωe) admits an almost-Kahler structure (Je, ge) of constant Hermitian curvature. Moreover, we show that for e > 0 small enough, the (Me, ωe) are all symplectically equivalent to a fixed symplectic manifold (M , ω) in which there is a surface S homologous to a 2-sphere, such that [S] is a vanishing cycle that admits a representant that is Hamiltonian stationary for ge.
分享
查看原文
具有$A_1$奇点的紧致复曲面的Almost-Kähler光滑性
本文研究了具有A1奇异点的常标量曲率Kahler轨道的光滑得到的几乎Kahler流形上常标量曲率度量的存在性。更准确地说,给定这样一个不允许非平凡全纯向量场的轨道,我们证明了一个几乎kahler平滑(Me, ωe)允许一个恒定厄米曲率的几乎kahler结构(Je, ge)。此外,我们证明了当e > 0足够小时,(Me, ωe)都辛等价于一个固定辛流形(M, ω),其中有一个曲面S与一个2球相对应,使得[S]是一个消失的循环,它允许一个对于ge是哈密顿平稳的表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信