协维流形的等接触嵌入

Pub Date : 2018-08-13 DOI:10.4310/jsg.2022.v20.n2.a3
Dishant M. Pancholi, Suhas Pandit
{"title":"协维流形的等接触嵌入","authors":"Dishant M. Pancholi, Suhas Pandit","doi":"10.4310/jsg.2022.v20.n2.a3","DOIUrl":null,"url":null,"abstract":"The purpose of this article is to study co-dimension $2$ iso-contact embeddings of closed contact manifolds. We first show that a closed contact manifold $(M^{2n-1}, \\xi_M)$ iso-contact embeds in a contact manifold $(N^{2n+1}, \\xi_N),$ provided $M$ contact embeds in $(N, \\xi_N)$ with a trivial normal bundle and the contact structure induced on $M$ via this embedding is homotopic as an almost-contact structure to $\\xi_M.$ We apply this result to first establish that a closed contact $3$--manifold having no $2$--torsion in its second integral cohomology iso-contact embeds in the standard contact $5$--sphere if and only if the first Chern class of the contact structure is zero. Finally, we discuss iso-contact embeddings of closed simply connected contact $5$--manifolds.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Iso-contact embeddings of manifolds in co-dimension $2$\",\"authors\":\"Dishant M. Pancholi, Suhas Pandit\",\"doi\":\"10.4310/jsg.2022.v20.n2.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this article is to study co-dimension $2$ iso-contact embeddings of closed contact manifolds. We first show that a closed contact manifold $(M^{2n-1}, \\\\xi_M)$ iso-contact embeds in a contact manifold $(N^{2n+1}, \\\\xi_N),$ provided $M$ contact embeds in $(N, \\\\xi_N)$ with a trivial normal bundle and the contact structure induced on $M$ via this embedding is homotopic as an almost-contact structure to $\\\\xi_M.$ We apply this result to first establish that a closed contact $3$--manifold having no $2$--torsion in its second integral cohomology iso-contact embeds in the standard contact $5$--sphere if and only if the first Chern class of the contact structure is zero. Finally, we discuss iso-contact embeddings of closed simply connected contact $5$--manifolds.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jsg.2022.v20.n2.a3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2022.v20.n2.a3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文的目的是研究闭合接触流形的协维$2$等接触嵌入。我们首先证明了一个闭合接触流形$(M^{2n-1}, \xi_M)$ iso-contact嵌入到一个接触流形$(N^{2n+1}, \xi_N)$中,假设$M$接触嵌入到$(N, \xi_N)$中具有平凡的法线束,并且通过该嵌入在$M$上诱导出的接触结构与$\xi_M是同伦的近似接触结构。我们应用这一结果,首先建立了当且仅当接触结构的第一Chern类为零时,在其第二积分上同调等接触中没有2$-扭转的闭合接触3$-流形嵌入到标准接触5$-球面上。最后,我们讨论了闭合单连通接触$5$-流形的等接触嵌入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Iso-contact embeddings of manifolds in co-dimension $2$
The purpose of this article is to study co-dimension $2$ iso-contact embeddings of closed contact manifolds. We first show that a closed contact manifold $(M^{2n-1}, \xi_M)$ iso-contact embeds in a contact manifold $(N^{2n+1}, \xi_N),$ provided $M$ contact embeds in $(N, \xi_N)$ with a trivial normal bundle and the contact structure induced on $M$ via this embedding is homotopic as an almost-contact structure to $\xi_M.$ We apply this result to first establish that a closed contact $3$--manifold having no $2$--torsion in its second integral cohomology iso-contact embeds in the standard contact $5$--sphere if and only if the first Chern class of the contact structure is zero. Finally, we discuss iso-contact embeddings of closed simply connected contact $5$--manifolds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信