{"title":"协维流形的等接触嵌入","authors":"Dishant M. Pancholi, Suhas Pandit","doi":"10.4310/jsg.2022.v20.n2.a3","DOIUrl":null,"url":null,"abstract":"The purpose of this article is to study co-dimension $2$ iso-contact embeddings of closed contact manifolds. We first show that a closed contact manifold $(M^{2n-1}, \\xi_M)$ iso-contact embeds in a contact manifold $(N^{2n+1}, \\xi_N),$ provided $M$ contact embeds in $(N, \\xi_N)$ with a trivial normal bundle and the contact structure induced on $M$ via this embedding is homotopic as an almost-contact structure to $\\xi_M.$ We apply this result to first establish that a closed contact $3$--manifold having no $2$--torsion in its second integral cohomology iso-contact embeds in the standard contact $5$--sphere if and only if the first Chern class of the contact structure is zero. Finally, we discuss iso-contact embeddings of closed simply connected contact $5$--manifolds.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Iso-contact embeddings of manifolds in co-dimension $2$\",\"authors\":\"Dishant M. Pancholi, Suhas Pandit\",\"doi\":\"10.4310/jsg.2022.v20.n2.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this article is to study co-dimension $2$ iso-contact embeddings of closed contact manifolds. We first show that a closed contact manifold $(M^{2n-1}, \\\\xi_M)$ iso-contact embeds in a contact manifold $(N^{2n+1}, \\\\xi_N),$ provided $M$ contact embeds in $(N, \\\\xi_N)$ with a trivial normal bundle and the contact structure induced on $M$ via this embedding is homotopic as an almost-contact structure to $\\\\xi_M.$ We apply this result to first establish that a closed contact $3$--manifold having no $2$--torsion in its second integral cohomology iso-contact embeds in the standard contact $5$--sphere if and only if the first Chern class of the contact structure is zero. Finally, we discuss iso-contact embeddings of closed simply connected contact $5$--manifolds.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jsg.2022.v20.n2.a3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2022.v20.n2.a3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Iso-contact embeddings of manifolds in co-dimension $2$
The purpose of this article is to study co-dimension $2$ iso-contact embeddings of closed contact manifolds. We first show that a closed contact manifold $(M^{2n-1}, \xi_M)$ iso-contact embeds in a contact manifold $(N^{2n+1}, \xi_N),$ provided $M$ contact embeds in $(N, \xi_N)$ with a trivial normal bundle and the contact structure induced on $M$ via this embedding is homotopic as an almost-contact structure to $\xi_M.$ We apply this result to first establish that a closed contact $3$--manifold having no $2$--torsion in its second integral cohomology iso-contact embeds in the standard contact $5$--sphere if and only if the first Chern class of the contact structure is zero. Finally, we discuss iso-contact embeddings of closed simply connected contact $5$--manifolds.