Iso-contact embeddings of manifolds in co-dimension $2$

IF 0.6 3区 数学 Q3 MATHEMATICS
Dishant M. Pancholi, Suhas Pandit
{"title":"Iso-contact embeddings of manifolds in co-dimension $2$","authors":"Dishant M. Pancholi, Suhas Pandit","doi":"10.4310/jsg.2022.v20.n2.a3","DOIUrl":null,"url":null,"abstract":"The purpose of this article is to study co-dimension $2$ iso-contact embeddings of closed contact manifolds. We first show that a closed contact manifold $(M^{2n-1}, \\xi_M)$ iso-contact embeds in a contact manifold $(N^{2n+1}, \\xi_N),$ provided $M$ contact embeds in $(N, \\xi_N)$ with a trivial normal bundle and the contact structure induced on $M$ via this embedding is homotopic as an almost-contact structure to $\\xi_M.$ We apply this result to first establish that a closed contact $3$--manifold having no $2$--torsion in its second integral cohomology iso-contact embeds in the standard contact $5$--sphere if and only if the first Chern class of the contact structure is zero. Finally, we discuss iso-contact embeddings of closed simply connected contact $5$--manifolds.","PeriodicalId":50029,"journal":{"name":"Journal of Symplectic Geometry","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2018-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symplectic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2022.v20.n2.a3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 12

Abstract

The purpose of this article is to study co-dimension $2$ iso-contact embeddings of closed contact manifolds. We first show that a closed contact manifold $(M^{2n-1}, \xi_M)$ iso-contact embeds in a contact manifold $(N^{2n+1}, \xi_N),$ provided $M$ contact embeds in $(N, \xi_N)$ with a trivial normal bundle and the contact structure induced on $M$ via this embedding is homotopic as an almost-contact structure to $\xi_M.$ We apply this result to first establish that a closed contact $3$--manifold having no $2$--torsion in its second integral cohomology iso-contact embeds in the standard contact $5$--sphere if and only if the first Chern class of the contact structure is zero. Finally, we discuss iso-contact embeddings of closed simply connected contact $5$--manifolds.
协维流形的等接触嵌入
本文的目的是研究闭合接触流形的协维$2$等接触嵌入。我们首先证明了一个闭合接触流形$(M^{2n-1}, \xi_M)$ iso-contact嵌入到一个接触流形$(N^{2n+1}, \xi_N)$中,假设$M$接触嵌入到$(N, \xi_N)$中具有平凡的法线束,并且通过该嵌入在$M$上诱导出的接触结构与$\xi_M是同伦的近似接触结构。我们应用这一结果,首先建立了当且仅当接触结构的第一Chern类为零时,在其第二积分上同调等接触中没有2$-扭转的闭合接触3$-流形嵌入到标准接触5$-球面上。最后,我们讨论了闭合单连通接触$5$-流形的等接触嵌入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes high quality papers on all aspects of symplectic geometry, with its deep roots in mathematics, going back to Huygens’ study of optics and to the Hamilton Jacobi formulation of mechanics. Nearly all branches of mathematics are treated, including many parts of dynamical systems, representation theory, combinatorics, packing problems, algebraic geometry, and differential topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信