正则拉格朗日量的h原理

IF 0.6 3区 数学 Q3 MATHEMATICS
Oleg Lazarev
{"title":"正则拉格朗日量的h原理","authors":"Oleg Lazarev","doi":"10.4310/jsg.2020.v18.n4.a4","DOIUrl":null,"url":null,"abstract":"We prove an existence h-principle for regular Lagrangians with Legendrian boundary in arbitrary Weinstein domains of dimension at least six; this extends a previous result of Eliashberg, Ganatra, and the author for Lagrangians in flexible domains. Furthermore, we show that all regular Lagrangians come from our construction and describe some related decomposition results. We also prove a regular version of Eliashberg and Murphy's h-principle for Lagrangian caps with loose negative end. As an application, we give a new construction of infinitely many regular Lagrangian disks in the standard Weinstein ball.","PeriodicalId":50029,"journal":{"name":"Journal of Symplectic Geometry","volume":"647 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2018-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"H-principles for regular Lagrangians\",\"authors\":\"Oleg Lazarev\",\"doi\":\"10.4310/jsg.2020.v18.n4.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove an existence h-principle for regular Lagrangians with Legendrian boundary in arbitrary Weinstein domains of dimension at least six; this extends a previous result of Eliashberg, Ganatra, and the author for Lagrangians in flexible domains. Furthermore, we show that all regular Lagrangians come from our construction and describe some related decomposition results. We also prove a regular version of Eliashberg and Murphy's h-principle for Lagrangian caps with loose negative end. As an application, we give a new construction of infinitely many regular Lagrangian disks in the standard Weinstein ball.\",\"PeriodicalId\":50029,\"journal\":{\"name\":\"Journal of Symplectic Geometry\",\"volume\":\"647 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symplectic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jsg.2020.v18.n4.a4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symplectic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2020.v18.n4.a4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

在至少6维的任意Weinstein域上证明了具有Legendrian边界的正则lagrangian的存在h原理;这扩展了Eliashberg、Ganatra和作者之前关于柔性域中拉格朗日量的结果。进一步,我们证明了所有正则拉格朗日量都来自于我们的构造,并描述了一些相关的分解结果。我们还证明了具有松散负端的拉格朗日帽的正则版本的Eliashberg和Murphy的h原理。作为应用,我们给出了标准温斯坦球上无限多个正则拉格朗日盘的一个新构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
H-principles for regular Lagrangians
We prove an existence h-principle for regular Lagrangians with Legendrian boundary in arbitrary Weinstein domains of dimension at least six; this extends a previous result of Eliashberg, Ganatra, and the author for Lagrangians in flexible domains. Furthermore, we show that all regular Lagrangians come from our construction and describe some related decomposition results. We also prove a regular version of Eliashberg and Murphy's h-principle for Lagrangian caps with loose negative end. As an application, we give a new construction of infinitely many regular Lagrangian disks in the standard Weinstein ball.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes high quality papers on all aspects of symplectic geometry, with its deep roots in mathematics, going back to Huygens’ study of optics and to the Hamilton Jacobi formulation of mechanics. Nearly all branches of mathematics are treated, including many parts of dynamical systems, representation theory, combinatorics, packing problems, algebraic geometry, and differential topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信