关于拉格朗日环面在$\mathbb{R}^4$中的连接

IF 0.6 3区 数学 Q3 MATHEMATICS
Laurent Cot'e
{"title":"关于拉格朗日环面在$\\mathbb{R}^4$中的连接","authors":"Laurent Cot'e","doi":"10.4310/jsg.2020.v18.n2.a3","DOIUrl":null,"url":null,"abstract":"We prove some results about linking of Lagrangian tori in the symplectic vector space $(\\mathbb{R}^4, \\omega)$. We show that certain enumerative counts of holomophic disks give useful information about linking. This enables us to prove, for example, that any two Clifford tori are unlinked in a strong sense. We extend work of Dimitroglou Rizell and Evans on linking of monotone Lagrangian tori to a class of non-monotone tori in $\\mathbb{R}^4$ and also strengthen their conclusions in the monotone case in $\\mathbb{R}^4$.","PeriodicalId":50029,"journal":{"name":"Journal of Symplectic Geometry","volume":"111 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2018-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On linking of Lagrangian tori in $\\\\mathbb{R}^4$\",\"authors\":\"Laurent Cot'e\",\"doi\":\"10.4310/jsg.2020.v18.n2.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove some results about linking of Lagrangian tori in the symplectic vector space $(\\\\mathbb{R}^4, \\\\omega)$. We show that certain enumerative counts of holomophic disks give useful information about linking. This enables us to prove, for example, that any two Clifford tori are unlinked in a strong sense. We extend work of Dimitroglou Rizell and Evans on linking of monotone Lagrangian tori to a class of non-monotone tori in $\\\\mathbb{R}^4$ and also strengthen their conclusions in the monotone case in $\\\\mathbb{R}^4$.\",\"PeriodicalId\":50029,\"journal\":{\"name\":\"Journal of Symplectic Geometry\",\"volume\":\"111 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symplectic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jsg.2020.v18.n2.a3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symplectic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2020.v18.n2.a3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

证明了辛向量空间$(\mathbb{R}^4, \)$中拉格朗日环面连接的一些结果。我们证明了全掩盘的某些计数给出了有关连接的有用信息。这使我们能够证明,例如,任意两个Clifford环面在强意义上是不相连的。我们推广了Dimitroglou Rizell和Evans关于单调拉格朗日环面与$\mathbb{R}^4$中一类非单调环面的联系的工作,并加强了他们在$\mathbb{R}^4$中单调情况下的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On linking of Lagrangian tori in $\mathbb{R}^4$
We prove some results about linking of Lagrangian tori in the symplectic vector space $(\mathbb{R}^4, \omega)$. We show that certain enumerative counts of holomophic disks give useful information about linking. This enables us to prove, for example, that any two Clifford tori are unlinked in a strong sense. We extend work of Dimitroglou Rizell and Evans on linking of monotone Lagrangian tori to a class of non-monotone tori in $\mathbb{R}^4$ and also strengthen their conclusions in the monotone case in $\mathbb{R}^4$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes high quality papers on all aspects of symplectic geometry, with its deep roots in mathematics, going back to Huygens’ study of optics and to the Hamilton Jacobi formulation of mechanics. Nearly all branches of mathematics are treated, including many parts of dynamical systems, representation theory, combinatorics, packing problems, algebraic geometry, and differential topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信