关于拉格朗日环面在$\mathbb{R}^4$中的连接

Pub Date : 2018-06-20 DOI:10.4310/jsg.2020.v18.n2.a3
Laurent Cot'e
{"title":"关于拉格朗日环面在$\\mathbb{R}^4$中的连接","authors":"Laurent Cot'e","doi":"10.4310/jsg.2020.v18.n2.a3","DOIUrl":null,"url":null,"abstract":"We prove some results about linking of Lagrangian tori in the symplectic vector space $(\\mathbb{R}^4, \\omega)$. We show that certain enumerative counts of holomophic disks give useful information about linking. This enables us to prove, for example, that any two Clifford tori are unlinked in a strong sense. We extend work of Dimitroglou Rizell and Evans on linking of monotone Lagrangian tori to a class of non-monotone tori in $\\mathbb{R}^4$ and also strengthen their conclusions in the monotone case in $\\mathbb{R}^4$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On linking of Lagrangian tori in $\\\\mathbb{R}^4$\",\"authors\":\"Laurent Cot'e\",\"doi\":\"10.4310/jsg.2020.v18.n2.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove some results about linking of Lagrangian tori in the symplectic vector space $(\\\\mathbb{R}^4, \\\\omega)$. We show that certain enumerative counts of holomophic disks give useful information about linking. This enables us to prove, for example, that any two Clifford tori are unlinked in a strong sense. We extend work of Dimitroglou Rizell and Evans on linking of monotone Lagrangian tori to a class of non-monotone tori in $\\\\mathbb{R}^4$ and also strengthen their conclusions in the monotone case in $\\\\mathbb{R}^4$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jsg.2020.v18.n2.a3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2020.v18.n2.a3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

证明了辛向量空间$(\mathbb{R}^4, \)$中拉格朗日环面连接的一些结果。我们证明了全掩盘的某些计数给出了有关连接的有用信息。这使我们能够证明,例如,任意两个Clifford环面在强意义上是不相连的。我们推广了Dimitroglou Rizell和Evans关于单调拉格朗日环面与$\mathbb{R}^4$中一类非单调环面的联系的工作,并加强了他们在$\mathbb{R}^4$中单调情况下的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On linking of Lagrangian tori in $\mathbb{R}^4$
We prove some results about linking of Lagrangian tori in the symplectic vector space $(\mathbb{R}^4, \omega)$. We show that certain enumerative counts of holomophic disks give useful information about linking. This enables us to prove, for example, that any two Clifford tori are unlinked in a strong sense. We extend work of Dimitroglou Rizell and Evans on linking of monotone Lagrangian tori to a class of non-monotone tori in $\mathbb{R}^4$ and also strengthen their conclusions in the monotone case in $\mathbb{R}^4$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信