{"title":"Non-degeneracy of the Hofer norm for Poisson structures","authors":"Duvsan Joksimovi'c, I. Marcut","doi":"10.4310/jsg.2021.v19.n5.a3","DOIUrl":null,"url":null,"abstract":"We remark that, as in the symplectic case, the Hofer norm on the Hamiltonian group of a Poisson manifold is non-degenerate. The proof is a straightforward application of tools from symplectic topology.","PeriodicalId":50029,"journal":{"name":"Journal of Symplectic Geometry","volume":"12 15 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2018-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symplectic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2021.v19.n5.a3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
We remark that, as in the symplectic case, the Hofer norm on the Hamiltonian group of a Poisson manifold is non-degenerate. The proof is a straightforward application of tools from symplectic topology.
期刊介绍:
Publishes high quality papers on all aspects of symplectic geometry, with its deep roots in mathematics, going back to Huygens’ study of optics and to the Hamilton Jacobi formulation of mechanics. Nearly all branches of mathematics are treated, including many parts of dynamical systems, representation theory, combinatorics, packing problems, algebraic geometry, and differential topology.