泊松齐次空间上辛体积的浓度

Pub Date : 2018-08-21 DOI:10.4310/JSG.2020.v18.n5.a1
A. Alekseev, Benjamin Hoffman, J. Lane, Yanpeng Li
{"title":"泊松齐次空间上辛体积的浓度","authors":"A. Alekseev, Benjamin Hoffman, J. Lane, Yanpeng Li","doi":"10.4310/JSG.2020.v18.n5.a1","DOIUrl":null,"url":null,"abstract":"For a compact Poisson-Lie group $K$, the homogeneous space $K/T$ carries a family of symplectic forms $\\omega_\\xi^s$, where $\\xi \\in \\mathfrak{t}^*_+$ is in the positive Weyl chamber and $s \\in \\mathbb{R}$. The symplectic form $\\omega_\\xi^0$ is identified with the natural $K$-invariant symplectic form on the $K$ coadjoint orbit corresponding to $\\xi$. The cohomology class of $\\omega_\\xi^s$ is independent of $s$ for a fixed value of $\\xi$. \nIn this paper, we show that as $s\\to -\\infty$, the symplectic volume of $\\omega_\\xi^s$ concentrates in arbitrarily small neighbourhoods of the smallest Schubert cell in $K/T \\cong G/B$. This strengthens earlier results [9,10] and is a step towards a conjectured construction of global action-angle coordinates on $Lie(K)^*$ [4, Conjecture 1.1].","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Concentration of symplectic volumes on Poisson homogeneous spaces\",\"authors\":\"A. Alekseev, Benjamin Hoffman, J. Lane, Yanpeng Li\",\"doi\":\"10.4310/JSG.2020.v18.n5.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a compact Poisson-Lie group $K$, the homogeneous space $K/T$ carries a family of symplectic forms $\\\\omega_\\\\xi^s$, where $\\\\xi \\\\in \\\\mathfrak{t}^*_+$ is in the positive Weyl chamber and $s \\\\in \\\\mathbb{R}$. The symplectic form $\\\\omega_\\\\xi^0$ is identified with the natural $K$-invariant symplectic form on the $K$ coadjoint orbit corresponding to $\\\\xi$. The cohomology class of $\\\\omega_\\\\xi^s$ is independent of $s$ for a fixed value of $\\\\xi$. \\nIn this paper, we show that as $s\\\\to -\\\\infty$, the symplectic volume of $\\\\omega_\\\\xi^s$ concentrates in arbitrarily small neighbourhoods of the smallest Schubert cell in $K/T \\\\cong G/B$. This strengthens earlier results [9,10] and is a step towards a conjectured construction of global action-angle coordinates on $Lie(K)^*$ [4, Conjecture 1.1].\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/JSG.2020.v18.n5.a1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/JSG.2020.v18.n5.a1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

对于紧泊松-李群$K$,齐次空间$K/T$携带一族辛形式$\omega_\xi^s$,其中$\xi \in \mathfrak{t}^*_+$在正Weyl室中,$s \in \mathbb{R}$。将$\omega_\xi^0$的辛形式与$\xi$对应的$K$共伴随轨道上的自然$K$不变辛形式进行了识别。对于$\xi$的固定值,$\omega_\xi^s$的上同类与$s$无关。在本文中,我们证明了在$s\to -\infty$中,$\omega_\xi^s$的辛体积集中在$K/T \cong G/B$中最小的Schubert单元的任意小的邻域中。这加强了先前的结果[9,10],并且朝着在$Lie(K)^*$上推测全局动作角坐标的构造迈出了一步[4,猜想1.1]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Concentration of symplectic volumes on Poisson homogeneous spaces
For a compact Poisson-Lie group $K$, the homogeneous space $K/T$ carries a family of symplectic forms $\omega_\xi^s$, where $\xi \in \mathfrak{t}^*_+$ is in the positive Weyl chamber and $s \in \mathbb{R}$. The symplectic form $\omega_\xi^0$ is identified with the natural $K$-invariant symplectic form on the $K$ coadjoint orbit corresponding to $\xi$. The cohomology class of $\omega_\xi^s$ is independent of $s$ for a fixed value of $\xi$. In this paper, we show that as $s\to -\infty$, the symplectic volume of $\omega_\xi^s$ concentrates in arbitrarily small neighbourhoods of the smallest Schubert cell in $K/T \cong G/B$. This strengthens earlier results [9,10] and is a step towards a conjectured construction of global action-angle coordinates on $Lie(K)^*$ [4, Conjecture 1.1].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信