A. Alekseev, Benjamin Hoffman, J. Lane, Yanpeng Li
{"title":"泊松齐次空间上辛体积的浓度","authors":"A. Alekseev, Benjamin Hoffman, J. Lane, Yanpeng Li","doi":"10.4310/JSG.2020.v18.n5.a1","DOIUrl":null,"url":null,"abstract":"For a compact Poisson-Lie group $K$, the homogeneous space $K/T$ carries a family of symplectic forms $\\omega_\\xi^s$, where $\\xi \\in \\mathfrak{t}^*_+$ is in the positive Weyl chamber and $s \\in \\mathbb{R}$. The symplectic form $\\omega_\\xi^0$ is identified with the natural $K$-invariant symplectic form on the $K$ coadjoint orbit corresponding to $\\xi$. The cohomology class of $\\omega_\\xi^s$ is independent of $s$ for a fixed value of $\\xi$. \nIn this paper, we show that as $s\\to -\\infty$, the symplectic volume of $\\omega_\\xi^s$ concentrates in arbitrarily small neighbourhoods of the smallest Schubert cell in $K/T \\cong G/B$. This strengthens earlier results [9,10] and is a step towards a conjectured construction of global action-angle coordinates on $Lie(K)^*$ [4, Conjecture 1.1].","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Concentration of symplectic volumes on Poisson homogeneous spaces\",\"authors\":\"A. Alekseev, Benjamin Hoffman, J. Lane, Yanpeng Li\",\"doi\":\"10.4310/JSG.2020.v18.n5.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a compact Poisson-Lie group $K$, the homogeneous space $K/T$ carries a family of symplectic forms $\\\\omega_\\\\xi^s$, where $\\\\xi \\\\in \\\\mathfrak{t}^*_+$ is in the positive Weyl chamber and $s \\\\in \\\\mathbb{R}$. The symplectic form $\\\\omega_\\\\xi^0$ is identified with the natural $K$-invariant symplectic form on the $K$ coadjoint orbit corresponding to $\\\\xi$. The cohomology class of $\\\\omega_\\\\xi^s$ is independent of $s$ for a fixed value of $\\\\xi$. \\nIn this paper, we show that as $s\\\\to -\\\\infty$, the symplectic volume of $\\\\omega_\\\\xi^s$ concentrates in arbitrarily small neighbourhoods of the smallest Schubert cell in $K/T \\\\cong G/B$. This strengthens earlier results [9,10] and is a step towards a conjectured construction of global action-angle coordinates on $Lie(K)^*$ [4, Conjecture 1.1].\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/JSG.2020.v18.n5.a1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/JSG.2020.v18.n5.a1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Concentration of symplectic volumes on Poisson homogeneous spaces
For a compact Poisson-Lie group $K$, the homogeneous space $K/T$ carries a family of symplectic forms $\omega_\xi^s$, where $\xi \in \mathfrak{t}^*_+$ is in the positive Weyl chamber and $s \in \mathbb{R}$. The symplectic form $\omega_\xi^0$ is identified with the natural $K$-invariant symplectic form on the $K$ coadjoint orbit corresponding to $\xi$. The cohomology class of $\omega_\xi^s$ is independent of $s$ for a fixed value of $\xi$.
In this paper, we show that as $s\to -\infty$, the symplectic volume of $\omega_\xi^s$ concentrates in arbitrarily small neighbourhoods of the smallest Schubert cell in $K/T \cong G/B$. This strengthens earlier results [9,10] and is a step towards a conjectured construction of global action-angle coordinates on $Lie(K)^*$ [4, Conjecture 1.1].