Positive topological entropy of positive contactomorphisms

Pub Date : 2018-06-30 DOI:10.4310/jsg.2020.v18.n3.a3
Lucas Dahinden
{"title":"Positive topological entropy of positive contactomorphisms","authors":"Lucas Dahinden","doi":"10.4310/jsg.2020.v18.n3.a3","DOIUrl":null,"url":null,"abstract":"A positive contactomorphism of a contact manifold $M$ is the end point of a contact isotopy on $M$ that is always positively transverse to the contact structure. Assume that $M$ contains a Legendrian sphere $\\Lambda$, and that $(M,\\Lambda)$ is fillable by a Liouville domain $(W,\\omega)$ with exact Lagrangian $L$ such that $\\omega|_{\\pi_2(W,L)}=0$. We show that if the exponential growth of the action filtered wrapped Floer homology of $(W,L)$ is positive, then every positive contactomorphism of $M$ has positive topological entropy. This result generalizes the result of Alves and Meiwes from Reeb flows to positive contactomorphisms, and it yields many examples of contact manifolds on which every positive contactomorphism has positive topological entropy, among them the exotic contact spheres found by Alves and Meiwes. \nA main step in the proof is to show that wrapped Floer homology is isomorphic to the positive part of Lagrangian Rabinowitz-Floer homology.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2020.v18.n3.a3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A positive contactomorphism of a contact manifold $M$ is the end point of a contact isotopy on $M$ that is always positively transverse to the contact structure. Assume that $M$ contains a Legendrian sphere $\Lambda$, and that $(M,\Lambda)$ is fillable by a Liouville domain $(W,\omega)$ with exact Lagrangian $L$ such that $\omega|_{\pi_2(W,L)}=0$. We show that if the exponential growth of the action filtered wrapped Floer homology of $(W,L)$ is positive, then every positive contactomorphism of $M$ has positive topological entropy. This result generalizes the result of Alves and Meiwes from Reeb flows to positive contactomorphisms, and it yields many examples of contact manifolds on which every positive contactomorphism has positive topological entropy, among them the exotic contact spheres found by Alves and Meiwes. A main step in the proof is to show that wrapped Floer homology is isomorphic to the positive part of Lagrangian Rabinowitz-Floer homology.
分享
查看原文
正接触形态的正拓扑熵
接触歧管的一种正接触态 $M$ 接触的终点是否开启 $M$ 它总是正横向于接触结构。假设 $M$ 包含一个Legendrian球 $\Lambda$,还有 $(M,\Lambda)$ 可以用刘维尔域填充吗 $(W,\omega)$ 精确拉格朗日量 $L$ 这样 $\omega|_{\pi_2(W,L)}=0$. 我们证明了如果作用的指数增长过滤包裹花的同调 $(W,L)$ 是正的,那么每一个正的接触形态的 $M$ 具有正的拓扑熵。该结果将Alves和Meiwes从Reeb流的结果推广到正接触形态,并给出了许多接触流形的例子,其中每个正接触形态都有正拓扑熵,其中包括Alves和Meiwes发现的奇异接触球。证明的一个主要步骤是证明包裹花同构与拉格朗日rabinowitz - flower同构的正部是同构的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信