Journal of X-Ray Science and Technology最新文献

筛选
英文 中文
Anatomical changes and dosimetric analysis of the neck region based on FBCT for nasopharyngeal carcinoma patients during radiotherapy. 基于 FBCT 的鼻咽癌患者放疗期间颈部解剖学变化和剂量学分析。
IF 3 3区 医学
Journal of X-Ray Science and Technology Pub Date : 2024-01-01 DOI: 10.3233/XST-230280
Aoqiang Chen, Xuemei Chen, Xiaobo Jiang, Yajuan Wang, Feng Chi, Dehuan Xie, Meijuan Zhou
{"title":"Anatomical changes and dosimetric analysis of the neck region based on FBCT for nasopharyngeal carcinoma patients during radiotherapy.","authors":"Aoqiang Chen, Xuemei Chen, Xiaobo Jiang, Yajuan Wang, Feng Chi, Dehuan Xie, Meijuan Zhou","doi":"10.3233/XST-230280","DOIUrl":"10.3233/XST-230280","url":null,"abstract":"<p><strong>Background: </strong>The study aimed to investigate anatomical changes in the neck region and evaluate their impact on dose distribution in patients with nasopharyngeal carcinoma (NPC) undergoing intensity modulated radiation therapy (IMRT). Additionally, the study sought to determine the optimal time for replanning during the course of treatment.</p><p><strong>Methods: </strong>Twenty patients diagnosed with NPC underwent IMRT, with weekly pretreatment kV fan beam computed tomography (FBCT) scans in the treatment room. Metastasized lymph nodes in the neck region and organs at risk (OARs) were redelineation using the images from the FBCT scans. Subsequently, the original treatment plan (PLAN0) was replicated to each FBCT scan to generate new plans labeled as PLAN 1-6. The dose-volume histograms (DVH) of the new plans and the original plan were compared. One-way repeated measure ANOVA was utilized to establish threshold(s) at various time points. The presence of such threshold(s) would signify significant change(s), suggesting the need for replanning.</p><p><strong>Results: </strong>Progressive volume reductions were observed over time in the neck region, the gross target volume for metastatic lymph nodes (GTVnd), as well as the submandibular glands and parotids. Compared to PLAN0, the mean dose (Dmean) of GTVnd-L significantly increased in PLAN5, while the minimum dose covering 95% of the volume (D95%) of PGTVnd-L showed a significant decrease from PLAN3 to PLAN6. Similarly, the Dmean of GTVnd-R significantly increased from PLAN4 to PLAN6, whereas the D95% of PGTVnd-R exhibited a significant decrease during the same period. Furthermore, the dose of bilateral parotid glands, bilateral submandibular glands, brainstem and spinal cord was gradually increased in the middle and late period of treatment.</p><p><strong>Conclusion: </strong>Significant anatomical and dosimetric changes were noted in both the target volumes and OARs. Considering the thresholds identified, it is imperative to undertake replanning at approximately 20 fractions. This measure ensures the delivery of adequate doses to target volumes while mitigating the risk of overdosing on OARs.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"783-795"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140061028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Auto-evaluation of skull radiograph accuracy using unsupervised anomaly detection. 利用无监督异常检测自动评估头骨X光片的准确性。
IF 1.7 3区 医学
Journal of X-Ray Science and Technology Pub Date : 2024-01-01 DOI: 10.3233/XST-230431
Haruyuki Watanabe, Yuina Ezawa, Eri Matsuyama, Yohan Kondo, Norio Hayashi, Sho Maruyama, Toshihiro Ogura, Masayuki Shimosegawa
{"title":"Auto-evaluation of skull radiograph accuracy using unsupervised anomaly detection.","authors":"Haruyuki Watanabe, Yuina Ezawa, Eri Matsuyama, Yohan Kondo, Norio Hayashi, Sho Maruyama, Toshihiro Ogura, Masayuki Shimosegawa","doi":"10.3233/XST-230431","DOIUrl":"10.3233/XST-230431","url":null,"abstract":"<p><strong>Background: </strong>Radiography plays an important role in medical care, and accurate positioning is essential for providing optimal quality images. Radiographs with insufficient diagnostic value are rejected, and retakes are required. However, determining the suitability of retaking radiographs is a qualitative evaluation.</p><p><strong>Objective: </strong>To evaluate skull radiograph accuracy automatically using an unsupervised learning-based autoencoder (AE) and a variational autoencoder (VAE). In this study, we eliminated visual qualitative evaluation and used unsupervised learning to identify skull radiography retakes from the quantitative evaluation.</p><p><strong>Methods: </strong>Five skull phantoms were imaged on radiographs, and 1,680 images were acquired. These images correspond to two categories: normal images captured at appropriate positions and images captured at inappropriate positions. This study verified the discriminatory ability of skull radiographs using anomaly detection methods.</p><p><strong>Results: </strong>The areas under the curves for AE and VAE were 0.7060 and 0.6707, respectively, in receiver operating characteristic analysis. Our proposed method showed a higher discrimination ability than those of previous studies which had an accuracy of 52%.</p><p><strong>Conclusions: </strong>Our findings suggest that the proposed method has high classification accuracy in determining the suitability of retaking skull radiographs. Automation of optimal image consideration, whether or not to retake radiographs, contributes to improving operational efficiency in busy X-ray imaging operations.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"1151-1162"},"PeriodicalIF":1.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141472035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial intelligence auxiliary diagnosis and treatment system for breast cancer in developing countries. 发展中国家乳腺癌人工智能辅助诊疗系统。
IF 1.7 3区 医学
Journal of X-Ray Science and Technology Pub Date : 2024-01-01 DOI: 10.3233/XST-230194
Wenxiu Li, Fangfang Gou, Jia Wu
{"title":"Artificial intelligence auxiliary diagnosis and treatment system for breast cancer in developing countries.","authors":"Wenxiu Li, Fangfang Gou, Jia Wu","doi":"10.3233/XST-230194","DOIUrl":"10.3233/XST-230194","url":null,"abstract":"<p><strong>Background: </strong>In many developing countries, a significant number of breast cancer patients are unable to receive timely treatment due to a large population base, high patient numbers, and limited medical resources.</p><p><strong>Objective: </strong>This paper proposes a breast cancer assisted diagnosis system based on electronic medical records. The goal of this system is to address the limitations of existing systems, which primarily rely on structured electronic records and may miss crucial information stored in unstructured records.</p><p><strong>Methods: </strong>The proposed approach is a breast cancer assisted diagnosis system based on electronic medical records. The system utilizes breast cancer enhanced convolutional neural networks with semantic initialization filters (BC-INIT-CNN). It extracts highly relevant tumor markers from unstructured medical records to aid in breast cancer staging diagnosis and effectively utilizes the important information present in unstructured records.</p><p><strong>Results: </strong>The model's performance is assessed using various evaluation metrics. Such as accuracy, ROC curves, and Precision-Recall curves. Comparative analysis demonstrates that the BC-INIT-CNN model outperforms several existing methods in terms of accuracy and computational efficiency.</p><p><strong>Conclusions: </strong>The proposed breast cancer assisted diagnosis system based on BC-INIT-CNN showcases the potential to address the challenges faced by developing countries in providing timely treatment to breast cancer patients. By leveraging unstructured medical records and extracting relevant tumor markers, the system enables accurate staging diagnosis and enhances the utilization of valuable information.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"395-413"},"PeriodicalIF":1.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139378672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CT-based intratumoral and peritumoral deep transfer learning features prediction of lymph node metastasis in non-small cell lung cancer. 基于CT的非小细胞肺癌淋巴结转移的瘤内和瘤周深度转移学习特征预测
IF 3 3区 医学
Journal of X-Ray Science and Technology Pub Date : 2024-01-01 DOI: 10.3233/XST-230326
Tianyu Lu, Jianbing Ma, Jiajun Zou, Chenxu Jiang, Yangyang Li, Jun Han
{"title":"CT-based intratumoral and peritumoral deep transfer learning features prediction of lymph node metastasis in non-small cell lung cancer.","authors":"Tianyu Lu, Jianbing Ma, Jiajun Zou, Chenxu Jiang, Yangyang Li, Jun Han","doi":"10.3233/XST-230326","DOIUrl":"10.3233/XST-230326","url":null,"abstract":"<p><strong>Background: </strong>The main metastatic route for lung cancer is lymph node metastasis, and studies have shown that non-small cell lung cancer (NSCLC) has a high risk of lymph node infiltration.</p><p><strong>Objective: </strong>This study aimed to compare the performance of handcrafted radiomics (HR) features and deep transfer learning (DTL) features in Computed Tomography (CT) of intratumoral and peritumoral regions in predicting the metastatic status of NSCLC lymph nodes in different machine learning classifier models.</p><p><strong>Methods: </strong>We retrospectively collected data of 199 patients with pathologically confirmed NSCLC. All patients were divided into training (n = 159) and validation (n = 40) cohorts, respectively. The best HR and DTL features in the intratumoral and peritumoral regions were extracted and selected, respectively. Support Vector Machine (SVM), k-Nearest Neighbors (KNN), Light Gradient Boosting Machine (Light GBM), Multilayer Perceptron (MLP), and Logistic Regression (LR) models were constructed, and the performance of the models was evaluated.</p><p><strong>Results: </strong>Among the five models in the training and validation cohorts, the LR classifier model performed best in terms of HR and DTL features. The AUCs of the training cohort were 0.841 (95% CI: 0.776-0.907) and 0.955 (95% CI: 0.926-0.983), and the AUCs of the validation cohort were 0.812 (95% CI: 0.677-0.948) and 0.893 (95% CI: 0.795-0.991), respectively. The DTL signature was superior to the handcrafted radiomics signature.</p><p><strong>Conclusions: </strong>Compared with the radiomics signature, the DTL signature constructed based on intratumoral and peritumoral areas in CT can better predict NSCLC lymph node metastasis.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"597-609"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140859871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revolutionizing tumor detection and classification in multimodality imaging based on deep learning approaches: Methods, applications and limitations. 基于深度学习方法革新多模态成像中的肿瘤检测和分类:方法、应用和局限性。
IF 1.7 3区 医学
Journal of X-Ray Science and Technology Pub Date : 2024-01-01 DOI: 10.3233/XST-230429
Dildar Hussain, Mohammed A Al-Masni, Muhammad Aslam, Abolghasem Sadeghi-Niaraki, Jamil Hussain, Yeong Hyeon Gu, Rizwan Ali Naqvi
{"title":"Revolutionizing tumor detection and classification in multimodality imaging based on deep learning approaches: Methods, applications and limitations.","authors":"Dildar Hussain, Mohammed A Al-Masni, Muhammad Aslam, Abolghasem Sadeghi-Niaraki, Jamil Hussain, Yeong Hyeon Gu, Rizwan Ali Naqvi","doi":"10.3233/XST-230429","DOIUrl":"10.3233/XST-230429","url":null,"abstract":"<p><strong>Background: </strong>The emergence of deep learning (DL) techniques has revolutionized tumor detection and classification in medical imaging, with multimodal medical imaging (MMI) gaining recognition for its precision in diagnosis, treatment, and progression tracking.</p><p><strong>Objective: </strong>This review comprehensively examines DL methods in transforming tumor detection and classification across MMI modalities, aiming to provide insights into advancements, limitations, and key challenges for further progress.</p><p><strong>Methods: </strong>Systematic literature analysis identifies DL studies for tumor detection and classification, outlining methodologies including convolutional neural networks (CNNs), recurrent neural networks (RNNs), and their variants. Integration of multimodality imaging enhances accuracy and robustness.</p><p><strong>Results: </strong>Recent advancements in DL-based MMI evaluation methods are surveyed, focusing on tumor detection and classification tasks. Various DL approaches, including CNNs, YOLO, Siamese Networks, Fusion-Based Models, Attention-Based Models, and Generative Adversarial Networks, are discussed with emphasis on PET-MRI, PET-CT, and SPECT-CT.</p><p><strong>Future directions: </strong>The review outlines emerging trends and future directions in DL-based tumor analysis, aiming to guide researchers and clinicians toward more effective diagnosis and prognosis. Continued innovation and collaboration are stressed in this rapidly evolving domain.</p><p><strong>Conclusion: </strong>Conclusions drawn from literature analysis underscore the efficacy of DL approaches in tumor detection and classification, highlighting their potential to address challenges in MMI analysis and their implications for clinical practice.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"857-911"},"PeriodicalIF":1.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140860642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Classification of benign and malignant pulmonary nodule based on local-global hybrid network. 基于局部-全局混合网络的良性和恶性肺结节分类
IF 3 3区 医学
Journal of X-Ray Science and Technology Pub Date : 2024-01-01 DOI: 10.3233/XST-230291
Xin Zhang, Ping Yang, Ji Tian, Fan Wen, Xi Chen, Tayyab Muhammad
{"title":"Classification of benign and malignant pulmonary nodule based on local-global hybrid network.","authors":"Xin Zhang, Ping Yang, Ji Tian, Fan Wen, Xi Chen, Tayyab Muhammad","doi":"10.3233/XST-230291","DOIUrl":"10.3233/XST-230291","url":null,"abstract":"<p><strong>Background: </strong>The accurate classification of pulmonary nodules has great application value in assisting doctors in diagnosing conditions and meeting clinical needs. However, the complexity and heterogeneity of pulmonary nodules make it difficult to extract valuable characteristics of pulmonary nodules, so it is still challenging to achieve high-accuracy classification of pulmonary nodules.</p><p><strong>Objective: </strong>In this paper, we propose a local-global hybrid network (LGHNet) to jointly model local and global information to improve the classification ability of benign and malignant pulmonary nodules.</p><p><strong>Methods: </strong>First, we introduce the multi-scale local (MSL) block, which splits the input tensor into multiple channel groups, utilizing dilated convolutions with different dilation rates and efficient channel attention to extract fine-grained local information at different scales. Secondly, we design the hybrid attention (HA) block to capture long-range dependencies in spatial and channel dimensions to enhance the representation of global features.</p><p><strong>Results: </strong>Experiments are carried out on the publicly available LIDC-IDRI and LUNGx datasets, and the accuracy, sensitivity, precision, specificity, and area under the curve (AUC) of the LIDC-IDRI dataset are 94.42%, 94.25%, 93.05%, 92.87%, and 97.26%, respectively. The AUC on the LUNGx dataset was 79.26%.</p><p><strong>Conclusion: </strong>The above classification results are superior to the state-of-the-art methods, indicating that the network has better classification performance and generalization ability.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"689-706"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139566189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clinical boundary conditions for propagation-based X-ray phase contrast imaging: from bio-sample models targeting to clinical applications. 基于传播的 X 射线相衬成像的临床边界条件:从生物样本模型到临床应用。
IF 1.7 3区 医学
Journal of X-Ray Science and Technology Pub Date : 2024-01-01 DOI: 10.3233/XST-230425
M S S Gobo, D R Balbin, M G Hönnicke, M E Poletti
{"title":"Clinical boundary conditions for propagation-based X-ray phase contrast imaging: from bio-sample models targeting to clinical applications.","authors":"M S S Gobo, D R Balbin, M G Hönnicke, M E Poletti","doi":"10.3233/XST-230425","DOIUrl":"10.3233/XST-230425","url":null,"abstract":"<p><strong>Background: </strong>Typical propagation-based X-ray phase contrast imaging (PB-PCI) experiments using polyenergetic sources are tested in very ideal conditions: low-energy spectrum (mainly characteristic X-rays), small thickness and homogeneous materials considered weakly absorbing objects, large object-to-detector distance, long exposure times and non-clinical detector.</p><p><strong>Objective: </strong>Explore PB-PCI features using boundary conditions imposed by a low power polychromatic X-ray source (X-ray spectrum without characteristic X-rays), thick and heterogenous materials and a small area imaging detector with high low-detection radiation threshold, elements commonly found in a clinical scenario.</p><p><strong>Methods: </strong>A PB-PCI setup implemented using a microfocus X-ray source and a dental imaging detector was characterized in terms of different spectra and geometric parameters on the acquired images. Test phantoms containing fibers and homogeneous materials with close attenuation characteristics and animal bone and mixed soft tissues (bio-sample models) were analyzed. Contrast to Noise Ratio (CNR), system spatial resolution and Kerma values were obtained for all images.</p><p><strong>Results: </strong>Phase contrast images showed CNR up to 15% higher than conventional contact images. Moreover, it is better seen when large magnifications (>3) and object-to-detector distances (>13 cm) were used. The influence of the spectrum was not appreciable due to the low efficiency of the detector (thin scintillator screen) at high energies.</p><p><strong>Conclusions: </strong>Despite the clinical boundary condition used in this work, regarding the X-ray spectrum, thick samples, and detection system, it was possible to acquire phase contrast images of biological samples.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"1163-1175"},"PeriodicalIF":1.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141472045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiscale unsupervised network for deformable image registration. 用于可变形图像配准的多尺度无监督网络
IF 1.7 3区 医学
Journal of X-Ray Science and Technology Pub Date : 2024-01-01 DOI: 10.3233/XST-240159
Yun Wang, Wanru Chang, Chongfei Huang, Dexing Kong
{"title":"Multiscale unsupervised network for deformable image registration.","authors":"Yun Wang, Wanru Chang, Chongfei Huang, Dexing Kong","doi":"10.3233/XST-240159","DOIUrl":"10.3233/XST-240159","url":null,"abstract":"<p><strong>Background: </strong>Deformable image registration (DIR) plays an important part in many clinical tasks, and deep learning has made significant progress in DIR over the past few years.</p><p><strong>Objective: </strong>To propose a fast multiscale unsupervised deformable image registration (referred to as FMIRNet) method for monomodal image registration.</p><p><strong>Methods: </strong>We designed a multiscale fusion module to estimate the large displacement field by combining and refining the deformation fields of three scales. The spatial attention mechanism was employed in our fusion module to weight the displacement field pixel by pixel. Except mean square error (MSE), we additionally added structural similarity (ssim) measure during the training phase to enhance the structural consistency between the deformed images and the fixed images.</p><p><strong>Results: </strong>Our registration method was evaluated on EchoNet, CHAOS and SLIVER, and had indeed performance improvement in terms of SSIM, NCC and NMI scores. Furthermore, we integrated the FMIRNet into the segmentation network (FCN, UNet) to boost the segmentation task on a dataset with few manual annotations in our joint leaning frameworks. The experimental results indicated that the joint segmentation methods had performance improvement in terms of Dice, HD and ASSD scores.</p><p><strong>Conclusions: </strong>Our proposed FMIRNet is effective for large deformation estimation, and its registration capability is generalizable and robust in joint registration and segmentation frameworks to generate reliable labels for training segmentation tasks.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"1385-1398"},"PeriodicalIF":1.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142141627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ensembled CNN with artificial bee colony optimization method for esophageal cancer stage classification using SVM classifier. 基于人工蜂群优化的集成CNN与SVM分类器的食管癌分期分类。
IF 1.7 3区 医学
Journal of X-Ray Science and Technology Pub Date : 2024-01-01 DOI: 10.3233/XST-230111
A Chempak Kumar, D Muhammad Noorul Mubarak
{"title":"Ensembled CNN with artificial bee colony optimization method for esophageal cancer stage classification using SVM classifier.","authors":"A Chempak Kumar, D Muhammad Noorul Mubarak","doi":"10.3233/XST-230111","DOIUrl":"10.3233/XST-230111","url":null,"abstract":"<p><strong>Background: </strong>Esophageal cancer (EC) is aggressive cancer with a high fatality rate and a rapid rise of the incidence globally. However, early diagnosis of EC remains a challenging task for clinicians.</p><p><strong>Objective: </strong>To help address and overcome this challenge, this study aims to develop and test a new computer-aided diagnosis (CAD) network that combines several machine learning models and optimization methods to detect EC and classify cancer stages.</p><p><strong>Methods: </strong>The study develops a new deep learning network for the classification of the various stages of EC and the premalignant stage, Barrett's Esophagus from endoscopic images. The proposed model uses a multi-convolution neural network (CNN) model combined with Xception, Mobilenetv2, GoogLeNet, and Darknet53 for feature extraction. The extracted features are blended and are then applied on to wrapper based Artificial Bee Colony (ABC) optimization technique to grade the most accurate and relevant attributes. A multi-class support vector machine (SVM) classifies the selected feature set into the various stages. A study dataset involving 523 Barrett's Esophagus images, 217 ESCC images and 288 EAC images is used to train the proposed network and test its classification performance.</p><p><strong>Results: </strong>The proposed network combining Xception, mobilenetv2, GoogLeNet, and Darknet53 outperforms all the existing methods with an overall classification accuracy of 97.76% using a 3-fold cross-validation method.</p><p><strong>Conclusion: </strong>This study demonstrates that a new deep learning network that combines a multi-CNN model with ABC and a multi-SVM is more efficient than those with individual pre-trained networks for the EC analysis and stage classification.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"31-51"},"PeriodicalIF":1.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138048317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A deep learning and radiomics based Alberta stroke program early CT score method on CTA to evaluate acute ischemic stroke. 基于深度学习和放射组学的阿尔伯塔卒中项目CTA早期CT评分方法评估急性缺血性卒中。
IF 1.7 3区 医学
Journal of X-Ray Science and Technology Pub Date : 2024-01-01 DOI: 10.3233/XST-230119
Ting Fang, Naijia Liu, Shengdong Nie, Shouqiang Jia, Xiaodan Ye
{"title":"A deep learning and radiomics based Alberta stroke program early CT score method on CTA to evaluate acute ischemic stroke.","authors":"Ting Fang, Naijia Liu, Shengdong Nie, Shouqiang Jia, Xiaodan Ye","doi":"10.3233/XST-230119","DOIUrl":"10.3233/XST-230119","url":null,"abstract":"<p><strong>Background: </strong>Alberta stroke program early CT score (ASPECTS) is a semi-quantitative evaluation method used to evaluate early ischemic changes in patients with acute ischemic stroke, which can guide physicians in treatment decisions and prognostic judgments.</p><p><strong>Objective: </strong>We propose a method combining deep learning and radiomics to alleviate the problem of large inter-observer variance in ASPECTS faced by physicians and assist them to improve the accuracy and comprehensiveness of the ASPECTS.</p><p><strong>Methods: </strong>Our study used a brain region segmentation method based on an improved encoding-decoding network. Through the deep convolutional neural network, 10 regions defined for ASPECTS will be obtained. Then, we used Pyradiomics to extract features associated with cerebral infarction and select those significantly associated with stroke to train machine learning classifiers to determine the presence of cerebral infarction in each scored brain region.</p><p><strong>Results: </strong>The experimental results show that the Dice coefficient for brain region segmentation reaches 0.79. Three radioactive features are selected to identify cerebral infarction in brain regions, and the 5-fold cross-validation experiment proves that these 3 features are reliable. The classifier trained based on 3 features reaches prediction performance of AUC = 0.95. Moreover, the intraclass correlation coefficient of ASPECTS between those obtained by the automated ASPECTS method and physicians is 0.86 (95% confidence interval, 0.56-0.96).</p><p><strong>Conclusions: </strong>This study demonstrates advantages of using a deep learning network to replace the traditional template registration for brain region segmentation, which can determine the shape and location of each brain region more precisely. In addition, a new brain region classifier based on radiomics features has potential to assist physicians in clinical stroke detection and improve the consistency of ASPECTS.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"17-30"},"PeriodicalIF":1.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138048316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信