Multi-parametric assessment of cardiac magnetic resonance images to distinguish myocardial infarctions: A tensor-based radiomics feature

IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION
Dehua Wang, Hayder Jasim Taher, Murtadha Al-Fatlawi, Badr Ahmed Abdullah, Munojat Khayatovna Ismailova, R. Abedi-Firouzjah
{"title":"Multi-parametric assessment of cardiac magnetic resonance images to distinguish myocardial infarctions: A tensor-based radiomics feature","authors":"Dehua Wang, Hayder Jasim Taher, Murtadha Al-Fatlawi, Badr Ahmed Abdullah, Munojat Khayatovna Ismailova, R. Abedi-Firouzjah","doi":"10.3233/xst-230307","DOIUrl":null,"url":null,"abstract":"AIM: This study assessed the myocardial infarction (MI) using a novel fusion approach (multi-flavored or tensor-based) of multi-parametric cardiac magnetic resonance imaging (CMRI) at four sequences; T1-weighted (T1W) in the axial plane, sense-balanced turbo field echo (sBTFE) in the axial plane, late gadolinium enhancement of heart short axis (LGE-SA) in the sagittal plane, and four-chamber views of LGE (LGE-4CH) in the axial plane. METHODS: After considering the inclusion and exclusion criteria, 115 patients (83 with MI diagnosis and 32 as healthy control patients), were included in the present study. Radiomic features were extracted from the whole left ventricular myocardium (LVM). Feature selection methods were Least Absolute Shrinkage and Selection Operator (Lasso), Minimum Redundancy Maximum Relevance (MRMR), Chi-Square (Chi2), Analysis of Variance (Anova), Recursive Feature Elimination (RFE), and SelectPersentile. The classification methods were Support Vector Machine (SVM), Logistic Regression (LR), and Random Forest (RF). Different metrics, including receiver operating characteristic curve (AUC), accuracy, F1- score, precision, sensitivity, and specificity were calculated for radiomic features extracted from CMR images using stratified five-fold cross-validation. RESULTS: For the MI detection, Lasso (as the feature selection) and RF/LR (as the classifiers) in sBTFE sequences had the best performance (AUC: 0.97). All features and classifiers of T1 + sBTFE sequences with the weighted method (as the fused image), had a good performance (AUC: 0.97). In addition, the results of the evaluated metrics, especially mean AUC and accuracy for all models, determined that the T1 + sBTFE-weighted fused method had strong predictive performance (AUC: 0.93±0.05; accuracy: 0.93±0.04), followed by T1 + sBTFE-PCA fused method (AUC: 0.85±0.06; accuracy: 0.84±0.06). CONCLUSION: Our selected CMRI sequences demonstrated that radiomics analysis enables to detection of MI accurately. Among the investigated sequences, the T1 + sBTFE-weighted fused method with the highest AUC and accuracy values was chosen as the best technique for MI detection.","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":"56 2","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/xst-230307","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

AIM: This study assessed the myocardial infarction (MI) using a novel fusion approach (multi-flavored or tensor-based) of multi-parametric cardiac magnetic resonance imaging (CMRI) at four sequences; T1-weighted (T1W) in the axial plane, sense-balanced turbo field echo (sBTFE) in the axial plane, late gadolinium enhancement of heart short axis (LGE-SA) in the sagittal plane, and four-chamber views of LGE (LGE-4CH) in the axial plane. METHODS: After considering the inclusion and exclusion criteria, 115 patients (83 with MI diagnosis and 32 as healthy control patients), were included in the present study. Radiomic features were extracted from the whole left ventricular myocardium (LVM). Feature selection methods were Least Absolute Shrinkage and Selection Operator (Lasso), Minimum Redundancy Maximum Relevance (MRMR), Chi-Square (Chi2), Analysis of Variance (Anova), Recursive Feature Elimination (RFE), and SelectPersentile. The classification methods were Support Vector Machine (SVM), Logistic Regression (LR), and Random Forest (RF). Different metrics, including receiver operating characteristic curve (AUC), accuracy, F1- score, precision, sensitivity, and specificity were calculated for radiomic features extracted from CMR images using stratified five-fold cross-validation. RESULTS: For the MI detection, Lasso (as the feature selection) and RF/LR (as the classifiers) in sBTFE sequences had the best performance (AUC: 0.97). All features and classifiers of T1 + sBTFE sequences with the weighted method (as the fused image), had a good performance (AUC: 0.97). In addition, the results of the evaluated metrics, especially mean AUC and accuracy for all models, determined that the T1 + sBTFE-weighted fused method had strong predictive performance (AUC: 0.93±0.05; accuracy: 0.93±0.04), followed by T1 + sBTFE-PCA fused method (AUC: 0.85±0.06; accuracy: 0.84±0.06). CONCLUSION: Our selected CMRI sequences demonstrated that radiomics analysis enables to detection of MI accurately. Among the investigated sequences, the T1 + sBTFE-weighted fused method with the highest AUC and accuracy values was chosen as the best technique for MI detection.
对心脏磁共振图像进行多参数评估,以区分心肌梗塞:基于张量的放射组学特征
目的:本研究使用四种序列的多参数心脏磁共振成像(CMRI)的新型融合方法(多味或基于张量)评估心肌梗死(MI):轴向平面的 T1 加权(T1W)、轴向平面的感应平衡涡轮场回波(sBTFE)、矢状面的心脏短轴晚期钆增强(LGE-SA)和轴向平面的四腔视图 LGE(LGE-4CH)。方法:考虑了纳入和排除标准后,本研究纳入了 115 例患者(83 例诊断为心肌梗死,32 例为健康对照组患者)。从整个左心室心肌(LVM)提取放射学特征。特征选择方法有最小绝对收缩和选择操作符(Lasso)、最小冗余最大相关性(MRMR)、Chi-Square(Chi2)、方差分析(Anova)、递归特征消除(RFE)和SelectPersentile。分类方法有支持向量机(SVM)、逻辑回归(LR)和随机森林(RF)。使用分层五倍交叉验证计算了从 CMR 图像中提取的放射学特征的不同指标,包括接收者操作特征曲线(AUC)、准确率、F1-得分、精确度、灵敏度和特异性。结果:在 MI 检测中,sBTFE 序列中的 Lasso(作为特征选择)和 RF/LR(作为分类器)性能最佳(AUC:0.97)。采用加权法(作为融合图像)的 T1 + sBTFE 序列的所有特征和分类器都具有良好的性能(AUC:0.97)。此外,评估指标的结果,特别是所有模型的平均 AUC 和准确率,确定 T1 + sBTFE 加权融合方法具有较强的预测性能(AUC:0.93±0.05;准确率:0.93±0.04),其次是 T1 + sBTFE-PCA 融合方法(AUC:0.85±0.06;准确率:0.84±0.06)。结论:我们选择的 CMRI 序列表明,放射组学分析能准确检测出 MI。在所研究的序列中,T1 + sBTFE加权融合方法的AUC值和准确度值最高,被选为MI检测的最佳技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
23.30%
发文量
150
审稿时长
3 months
期刊介绍: Research areas within the scope of the journal include: Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信