{"title":"Erratum to \"Mask R-CNN assisted diagnosis of spinal tuberculosis\".","authors":"","doi":"10.1177/08953996251346352","DOIUrl":"https://doi.org/10.1177/08953996251346352","url":null,"abstract":"","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"8953996251346352"},"PeriodicalIF":1.7,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144133174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yihao Sun, Tianming Du, Bin Wang, Md Mamunur Rahaman, Xinghao Wang, Xinyu Huang, Tao Jiang, Marcin Grzegorzek, Hongzan Sun, Jian Xu, Chen Li
{"title":"COVID-19CT+: A public dataset of CT images for COVID-19 retrospective analysis.","authors":"Yihao Sun, Tianming Du, Bin Wang, Md Mamunur Rahaman, Xinghao Wang, Xinyu Huang, Tao Jiang, Marcin Grzegorzek, Hongzan Sun, Jian Xu, Chen Li","doi":"10.1177/08953996251332793","DOIUrl":"https://doi.org/10.1177/08953996251332793","url":null,"abstract":"<p><p>Background and objectiveCOVID-19 is considered as the biggest global health disaster in the 21st century, and it has a huge impact on the world.MethodsThis paper publishes a publicly available dataset of CT images of multiple types of pneumonia (COVID-19CT+). Specifically, the dataset contains 409,619 CT images of 1333 patients, with subset-A containing 312 community-acquired pneumonia cases and subset-B containing 1021 COVID-19 cases. In order to demonstrate that there are differences in the methods used to classify COVID-19CT+ images across time, we selected 13 classical machine learning classifiers and 5 deep learning classifiers to test the image classification task.ResultsIn this study, two sets of experiments are conducted using traditional machine learning and deep learning methods, the first set of experiments is the classification of COVID-19 in Subset-B versus COVID-19 white lung disease, and the second set of experiments is the classification of community-acquired pneumonia in Subset-A versus COVID-19 in Subset-B, demonstrating that the different periods of the methods differed on COVID-19CT+. On the first set of experiments, the accuracy of traditional machine learning reaches a maximum of 97.3% and a minimum of only 62.6%. Deep learning algorithms reaches a maximum of 97.9% and a minimum of 85.7%. On the second set of experiments, traditional machine learning reaches a high of 94.6% accuracy and a low of 56.8%. The deep learning algorithm reaches a high of 91.9% and a low of 86.3%.ConclusionsThe COVID-19CT+ in this study covers a large number of CT images of patients with COVID-19 and community-acquired pneumonia and is one of the largest datasets available. We expect that this dataset will attract more researchers to participate in exploring new automated diagnostic algorithms to contribute to the improvement of the diagnostic accuracy and efficiency of COVID-19.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"8953996251332793"},"PeriodicalIF":1.7,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144129451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prescriptive analytics decision-making system for cardiovascular disease prediction in long COVID patients using advanced reinforcement learning algorithms.","authors":"Diana Juliet S, Banumathi J","doi":"10.1177/08953996251335115","DOIUrl":"https://doi.org/10.1177/08953996251335115","url":null,"abstract":"<p><p>In recent years Covid-19 impact is causing unprecedented difficulties worldwide, affecting lifestyle choices. The post-pandemic era has made this even more critical.COVID-19 triggers widespread inflammation throughout the body, potentially causing damage to the heart and other vital organs. Mortality data from COVID-19 clearly show that the highest death rates occur in individuals with chronic conditions, such as diabetes, pneumonia, cardiovascular disease (CVD), and acute renal failure.CVD is a particular concern in the medical field. The early detection of CVD remains a significant challenge, as early identification can prompt lifestyle changes and ensure appropriate medical interventions when needed. Individuals with CVD are at an increased risk for heart attack and other serious complications. There is a limited amount of data available to study the effects of COVID-19 on CVD in COVID-19 patients. However, it is essential to monitor these patients to ensure full recovery without complications. The proposed system is specifically designed for individuals experiencing prolonged symptoms following a COVID-19 infection, commonly referred to as long COVID patients. This research introduces a novel Decision-Making System for CVD Prediction, utilizing an improved dual-attention residual bi-directional gated recurrent neural network unit (DA-ResBiGRU) algorithm with AI-Biruni Earth Radius Optimization (ABER). The proposed system employs state-of-the-art predictive algorithms and real-time monitoring to assess individual patient risk profiles accurately. This research addresses the critical need for personalized risk assessment in patients with long-term COVID, aiming to assist healthcare providers in timely and targeted interventions. By analyzing intricate patterns in patient data, the decision-making system enhances the precision of CVD prediction. Additionally, the system's adaptive nature allows it to continuously learn from new patient data, ensuring that its predictions remain up-to-date and reflective of the evolving understanding of long COVID-related cardiovascular risks. The simulation findings of this research highlight the potential of the proposed algorithm to be integrated into clinical decision-making, helping healthcare professionals identify high-risk patients more effectively. The proposed method outperformed existing algorithms, such as Deep Neural Network (DNN), Long short-term memory (LSTM), Inception-v3, Xception, and MobileNetV2, achieving the highest accuracy (97.88%), sensitivity (95.50%), specificity (94.29%), precision (96.68%), and F-measure (95.85%).</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"8953996251335115"},"PeriodicalIF":1.7,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144028985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A directional relative TV algorithm for sparse-view CT reconstruction.","authors":"Yanan Wang, Yu Wang, Peng Liu, Chenyun Fang, Yanjun Zhang, Ruotong Yang, Zhiwei Qiao","doi":"10.1177/08953996251337909","DOIUrl":"https://doi.org/10.1177/08953996251337909","url":null,"abstract":"<p><strong>Objective: </strong>Computed tomography (CT) is a widely used medical imaging modality, but its radiation exposure poses potential risks to human health. Sparse-view scanning has emerged as an effective approach to reduce radiation dose; however, images reconstructed using the filtered back-projection (FBP) algorithm from sparse-view projections often suffer from severe streak artifacts. Achieving high-quality CT image reconstructed from sparse-view projections remains a challenging task.</p><p><strong>Methods: </strong>Building on compressed sensing (CS), the total variation (TV) algorithm is applied for high-quality sparse-view reconstruction. We further propose a relative total variation (RTV) algorithm to enhance the accuracy of sparse-view reconstruction. Experimental results indicate that while the RTV algorithm improves accuracy, it has limitations in edge preservation. To address this, inspired by the success of directional TV (DTV) in limited-angle reconstruction, we develop a directional relative TV (DRTV) model. This model applies the RTV technique in both x and y directions independently, and we derive its adaptive steepest descent projection onto convex set (ASD-POCS) solution algorithm.</p><p><strong>Results: </strong>Experiments conducted on simulated phantoms and real CT images demonstrate the correctness, convergence, and superior performance of the DRTV algorithm in sparse-view reconstruction. Compared with the TV, DTV, and RTV algorithm, the DRTV algorithm exhibits superior preservation of structural features and texture details.</p><p><strong>Significance: </strong>The DRTV algorithm represents an advanced method for high-precision sparse-view CT reconstruction, providing stable and accurate results. Moreover, the approach is applicable to other medical imaging modalities.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"8953996251337909"},"PeriodicalIF":1.7,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144037493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chenchen Ma, Jiongtao Zhu, Xin Zhang, Han Cui, Yuhang Tan, Jinchuan Guo, Hairong Zheng, Dong Liang, Ting Su, Yi Sun, Yongshuai Ge
{"title":"Learning-based multi-material CBCT image reconstruction with ultra-slow kV switching.","authors":"Chenchen Ma, Jiongtao Zhu, Xin Zhang, Han Cui, Yuhang Tan, Jinchuan Guo, Hairong Zheng, Dong Liang, Ting Su, Yi Sun, Yongshuai Ge","doi":"10.1177/08953996251331790","DOIUrl":"https://doi.org/10.1177/08953996251331790","url":null,"abstract":"<p><p>ObjectiveThe purpose of this study is to perform multiple (<math><mo>≥</mo><mn>3</mn></math>) material decomposition with deep learning method for spectral cone-beam CT (CBCT) imaging based on ultra-slow kV switching.ApproachIn this work, a novel deep neural network called SkV-Net is developed to reconstruct multiple material density images from the ultra-sparse spectral CBCT projections acquired using the ultra-slow kV switching technique. In particular, the SkV-Net has a backbone structure of U-Net, and a multi-head axial attention module is adopted to enlarge the perceptual field. It takes the CT images reconstructed from each kV as input, and output the basis material images automatically based on their energy-dependent attenuation characteristics. Numerical simulations and experimental studies are carried out to evaluate the performance of this new approach.Main ResultsIt is demonstrated that the SkV-Net is able to generate four different material density images, i.e., fat, muscle, bone and iodine, from five spans of kV switched spectral projections. Physical experiments show that the decomposition errors of iodine and CaCl<math><msub><mrow></mrow><mn>2</mn></msub></math> are less than 6<math><mi>%</mi></math>, indicating high precision of this novel approach in distinguishing materials.SignificanceSkV-Net provides a promising multi-material decomposition approach for spectral CBCT imaging systems implemented with the ultra-slow kV switching scheme.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"8953996251331790"},"PeriodicalIF":1.7,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144056865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Basic acceleration technique with theoretical analysis on iterative algorithms for image reconstruction.","authors":"Shuhua Ji, Boyan Ren, Xing Zhao, Xuying Zhao","doi":"10.1177/08953996251335119","DOIUrl":"https://doi.org/10.1177/08953996251335119","url":null,"abstract":"<p><p>In image reconstruction and processing, incorporating prior information, particularly the nonnegativity of pixel values, is essential. Existing computed tomography (CT) iterative reconstruction algorithms, including the algebraic reconstruction technique (ART), simultaneous ART (SART), and the simultaneous iterative reconstruction technique (SIRT), typically address negative components during the iteration process by either setting them to zero, introducing regularization terms to prevent negativity, or leaving them unchanged. This paper establishes a general framework in which enforcing the nonnegativity prior accelerates the convergence of the reconstructed image toward the true solution. Within this framework, we propose two efficient and simple acceleration techniques: setting negative pixel values to their absolute values and updating them to the estimated values from the previous update. Experiments were conducted using ART, SIRT, and SART algorithms, integrated with the corresponding acceleration techniques, on full-angle, limited-angle, and noisy simulated data, as well as real data. The results validate the effectiveness of the proposed acceleration methods by evaluating image quality using the PSNR and SSIM metrics. Notably, the proposed technique that sets negative pixel values to their absolute values is strongly recommended, as it significantly outperforms the existing technique that sets them to zero, both in terms of image quality and iteration time.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"8953996251335119"},"PeriodicalIF":1.7,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144056041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Promptable segmentation of CT lung lesions based on improved U-Net and Segment Anything model (SAM).","authors":"Wensong Yan, Yunhua Xu, Shiju Yan","doi":"10.1177/08953996251333364","DOIUrl":"https://doi.org/10.1177/08953996251333364","url":null,"abstract":"<p><p>BackgroundComputed tomography (CT) is widely used in clinical diagnosis of lung diseases. The automatic segmentation of lesions in CT images aids in the development of intelligent lung disease diagnosis.ObjectiveThis study aims to address the issue of imprecise segmentation in CT images due to the blurred detailed features of lesions, which can easily be confused with surrounding tissues.MethodsWe proposed a promptable segmentation method based on an improved U-Net and Segment Anything model (SAM) to improve segmentation accuracy of lung lesions in CT images. The improved U-Net incorporates a multi-scale attention module based on a channel attention mechanism ECA (Efficient Channel Attention) to improve recognition of detailed feature information at edge of lesions; and a promptable clipping module to incorporate physicians' prior knowledge into the model to reduce background interference. Segment Anything model (SAM) has a strong ability to recognize lesions and pulmonary atelectasis or organs. We combine the two to improve overall segmentation performances.ResultsOn the LUAN16 dataset and a lung CT dataset provided by the Shanghai Chest Hospital, the proposed method achieves Dice coefficients of 80.12% and 92.06%, and Positive Predictive Values of 81.25% and 91.91%, which are superior to most existing mainstream segmentation methods.ConclusionThe proposed method can be used to improve segmentation accuracy of lung lesions in CT images, enhance automation level of existing computer-aided diagnostic systems, and provide more effective assistance to radiologists in clinical practice.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"8953996251333364"},"PeriodicalIF":1.7,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144054951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"KBA-PDNet: A primal-dual unrolling network with kernel basis attention for low-dose CT reconstruction.","authors":"Rongfeng Li, Dalin Wang","doi":"10.1177/08953996241308759","DOIUrl":"10.1177/08953996241308759","url":null,"abstract":"<p><p>Computed tomography (CT) image reconstruction is faced with challenge of balancing image quality and radiation dose. Recent unrolled optimization methods address low-dose CT image quality issues using convolutional neural networks or self-attention mechanisms as regularization operators. However, these approaches have limitations in adaptability, computational efficiency, or preservation of beneficial inductive biases. They also depend on initial reconstructions, potentially leading to information loss and error propagation. To overcome these limitations, Kernel Basis Attention Primal-Dual Network (KBA-PDNet) is proposed. The method unrolls multiple iterations of the proximal primal-dual optimization process, replacing traditional proximal operators with Kernel Basis Attention (KBA) modules. This design enables direct training from raw measurement data without relying on preliminary reconstructions. The KBA module achieves adaptability by learning and dynamically fusing kernel bases, generating customized convolution kernels for each spatial location. This approach maintains computational efficiency while preserving beneficial inductive biases of convolutions. By training end-to-end from raw projection data, KBA-PDNet fully utilizes all original information, potentially capturing details lost in preliminary reconstructions. Experiments on simulated and clinical datasets demonstrate that KBA-PDNet outperforms existing approaches in both image quality and computational efficiency.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"591-607"},"PeriodicalIF":1.7,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143537915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multi-limited-angle spectral CT image reconstruction based on average image induced relative total variation model.","authors":"Zhaoqiang Shen, Yumeng Guo","doi":"10.1177/08953996251314771","DOIUrl":"10.1177/08953996251314771","url":null,"abstract":"<p><p>In recent years, spectral computed tomography (CT) has attracted extensive attention. The purpose of this study is to achieve a low-cost and fast energy spectral CT reconstruction algorithm by implementing multi-limited-angle scans. General spectral CT projection data are collected over a full-angular range of 360 degrees. We simulate multi-source spectral CT by using a pair of X-ray source/detector. To speed up scanning, multi-limited-angle scanning was used in each energy channel. On this basis, an average image induced relative total variation (Aii-RTV) with multi-limited-angle spectral CT image reconstruction model is proposed. The iterative algorithm is used to solve Aii-RTV. Before iteration, the weighted average projection data of the multi-limited-angle energy spectral is carried out. In each step of the iterative algorithm flow is as follows: First, the relative total variation (RTV) reconstruction model is used to reconstruct the average image using average projection data. Then, the partial derivative of the average image is used to calculate the inherent variation in RTV model due to the integrity of the average image, and take its reciprocal as the weight coefficient of the windowing total variation of each energy channel reconstruction image. Finally, the average energy image is used to guide the multi-limited-angle projection data to reconstruct the image of each energy channel so as to suppress the limited-angle artifact of each energy channel image. In addition, we also discuss the influence of parameter selection on reconstructed image quality, which is important for regularization model. Through the reconstruction of multi-limited-angle spectral CT projection data, quantitative results and reconstructed images show that our algorithm has better performance than prior image constrained compressed sensing (PICCS) and RTV. The average PSNR of our reconstruction results in different channels was 35.6273, 4.533 and 2.301 higher than RTV (31.0943) and PICCS (33.3263), respectively.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"637-650"},"PeriodicalIF":1.7,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143651687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparative analysis of machine learning and deep learning algorithms for knee arthritis detection using YOLOv8 models.","authors":"Ilkay Cinar","doi":"10.1177/08953996241308770","DOIUrl":"10.1177/08953996241308770","url":null,"abstract":"<p><p>Knee arthritis is a prevalent joint condition that affects many people worldwide. Early detection and appropriate treatment are essential to slow the disease's progression and enhance patients' quality of life. In this study, various machine learning and deep learning algorithms were used to detect knee arthritis. The machine learning models included k-NN, SVM, and GBM, while DenseNet, EfficientNet, and InceptionV3 were used as deep learning models. Additionally, YOLOv8 classification models (YOLOv8n-cls, YOLOv8s-cls, YOLOv8m-cls, YOLOv8l-cls, and YOLOv8x-cls) were employed. The \"Annotated Dataset for Knee Arthritis Detection\" with five classes (Normal, Doubtful, Mild, Moderate, Severe) and 1650 images were divided into 80% training, 10% validation, and 10% testing using the Hold-Out method. YOLOv8 models outperformed both machine learning and deep learning algorithms. k-NN, SVM, and GBM achieved success rates of 63.61%, 64.14%, and 67.36%, respectively. Among deep learning models, DenseNet, EfficientNet, and InceptionV3 achieved 62.35%, 70.59%, and 79.41%. The highest success was seen in the YOLOv8x-cls model at 86.96%, followed by YOLOv8l-cls at 86.79%, YOLOv8m-cls at 83.65%, YOLOv8s-cls at 80.37%, and YOLOv8n-cls at 77.91%.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"565-577"},"PeriodicalIF":1.7,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143517168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}